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Abstract-This thesis describes several new quantum al- 
gorithms. These include  a  polynomial time algorithm that 
uses a  quantum  fast  Fourier  transform to find eigenvalues 
and eigenvectors of a  Hamiltonian operator, and that can 
be applied in cases (commonly found  in ab  initio physics 
and chemistry problems)  for  which all known classical algo- 
rithms require exponential time. Fast algorithms for  simu- 
lating many body Fermi systems are also provided in both 
first and second  quantized descriptions. An efficient quan- 
tum algorithm for anti-symmetrization is given  as well as a 
detailed discussion of  a simulation of the Hubbard model. 

In addition, quantum algorithms that calculate numeri- 
cal integrals and various characteristics of  stochastic pro- 
cesses are described. Two techniques are given, both of 
which obtain an exponential speed increase in compari- 
son to the fastest known  classical deterministic algorithms 
and a  quadratic speed increase  in comparison to classical 
Monte Carlo (probabilistic) methods. I derive a simpler and 
slightly faster version  of  Grover’s mean algorithm, show how 
to apply quantum counting to the problem, develop  some 
variations of these algorithms, and show  how both (appar- 
ently  distinct) approaches can be understood from the same 
unified  framework. 
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I.  INTRODUCTION 
A .  Motivation 

It is often difficult to see the hidden assumptions on 
which the foundations of science are  built. The 20th cen- 
tury has witnessed at least two revolutions in physics, and 
in both of these revolutions not only  were  new laws discov- 
ered,  but prior assumptions were  found to be false. Ideas 
that were previously unquestioned were revealed to be mere 
approximations. 

The field of computer science has for the greater part of 
this  century been based upon the ideas of classical physics. 
In  fact, the theory of quantum computing has flourished 
only in the last few years. In  retrospect, this may seem to 
be hopelessly  naive - and, perhaps, to  the physicist who 
has grown accustomed to dealing mostly with  quantum me- 
chanics and only occasionally with classical mechanics - 
this may appear to be somewhat surprising. The world is 
properly described by quantum mechanics; since computers 
are physical devices that exist in the world, surely they  too 
must be properly described by quantum mechanics. The 
logic is obvious and compelling. 

However, it is not so clear how a quantum mechanical 
computer would operate, or even how computation is sup- 
ported by quantum mechanics’.  Moreover, it is not at all 
obvious, a priori, that a quantum mechanical computer 
should have any advantage over a classical computer. It 
is perhaps for some of these reasons that  the theory of 
quantum computing took a long time to develop. Another 
explanation may be that theoretical computer science is an 
abstract discipline, dealing with Turing machines and au- 
tomata, proofs and lemmas, and  mathematical models that 
are  far removed  from the  actual physical reality of comput- 
ing machines. Stated differently, one might say that  the 
theory of computer science is a subject that has been tra- 
ditionally much  closer to mathematics than physics, and 
the assumption that information is classical was hidden in 
the abstractions. 

Whatever the reason may be, one fact is now clear: 
the introduction of quantum physics to computer science 
changes fundamentally the foundations of the subject. 
Computers  are not classical devices. 

Often, in conferences and review articles and  other such 
places, the subject of quantum. computing is motivated by 

*Indeed, were it  not for the fact that  the existance of computers 
in the real world implies that  it must be possible to compute  with 
quantum mechanics on some level, it would not even be obvious, a 
priori,  if quantum mechanics should allow for the possibility of com- 
puting.  Proof by existance  is vastly different from an  understanding 
of computation on a detailed, microscopic level. 



the argument that transistors  are becoming smaller and 
smaller, that pretty soon quantum effects  will start  to cause 
limitations on our ability to design faster chips, and that 
one should therefore study  the quantum mechanics of com- 
puting. While this  type of argument may have been a his- 
torical motivation, it is today so far from the point that  it 
practically misleads.  While it is surely important to investi- 
gate the quantum mechanics of small classical components, 
the  subject of quantum computing is not merely an investi- 
gation into the possibility of smaller and faster computers. 
It is a new formalism for the theory of computer science. 
And just as in the case of mechanics, the classical theory is 
left as an approximation to be used in those special cases 
where it may be  appropriate. 

My  own interest in quantum computing, like that of 
many others, came as a result of Peter Shor’s now famous 
1994  discovery of a quantum polynomial-time factoring al- 
gorithm[86]. This result publicized the idea that a quantum 
computer might be fundamentally more  powerful than a 
classical computer. It indicated that a quantum computer 
would be useful -that it might possess capabilities that no 
classical computer could.2 It also left open two important 
questions: 

1. How might one build a quantum computer? 
2. What can one do with a quantum computer other 

than factor large integers? 
This thesis attacks  the second of these questions. In 

particular,  it asks: What can a physicist do with a quan- 
tum computer? It also explores the relationship between 
physics and  computation in some more depth,  and in par- 
ticular, looks at how computational complexity theory de- 
pends very sensitively on physical  laws. 

The remainder of the thesis is  organized as follows: The 
first two chapters  constitute a review of computation and 
the physics of computation. Theoretical computer science 
and classical computation will be discussed in this first 
chapter,  and  quantum computing will  be  discussed in the 
second. While these two chapters provide the necessary 
background for the remainder of the thesis, the reader who 
is familiar with these topics may  freely pass them over. In 
the final three  chapters, I present new results. Chapter 3 
discusses the use of quantum computers for  physics  sim- 
ulations and ab initio calculations. I describe polynomial 
time  quantum algorithms for  finding  eigenvalues and eigen- 
vectors of a Hamiltonian operator, for simulating many 
body Fermi systems in general and  the Hubbard model in 
particular,  and for antisymmetrizing the  state of the com- 
puter.  Chapter 4 describes how one can obtain a quantum 
speed-up when calculating integrals. I derive a simpler and 
slightly faster version of Grover’s mean algorithm, show 

*For the reader who  is unfamiliar with public key cryptosystems, 
it is important  to  be aware that  the security of M A  [84], one of 
the world’s most common methods for encrypting communications, 
depends  upon the difficulty of factoring large numbers. A real life 
quantum computer, therefore, would render most secret codes obso- 
lete. (Moreover, there is some indication that  quantum computers 
would render all public key systems obsolete). This application has 
been one reason that  quantum computing has  attracted  widespread 
attention. 

how to apply quantum counting to  the problem, develop 
some variations of these algorithms, and show  how both 
(apparently  distinct) approaches can  be understood from 
the same unified  framework. Finally, in Chapter 5, I’ll  show 
how the power  of quantum computers depends very  sensi- 
tively on the underlying physical model - and in particular, 
that if the physics of the universe were only slightly differ- 
ent  than we think  it is (and  it might be!), then  quantum 
computers would be unbelievably powerful. 

B. An introduction  to  the  theory of computing machines 

It is necessary to understand the classical theory of  com- 
puting machines  before one can examine the quantum  the- 
ory.  Moreover, if one is to argue that quantum computers 
are  truly more powerful than classical computers, then  it 
will be necessary to  be somewhat precise about  the clas- 
sical theory. This section is thus intended as a physicist’s 
introduction to computer science (or at least, those aspects 
of computer science  which are relevant to  the work in this 
thesis). Since physicists have  widely disparate levels of 
familiarity with computer science, it is written to be self- 
contained, with little  or no prior knowledge a s~umed .~  

The first significant  work in theoretical computer science 
took place in the early part of this century. Godel, Tur- 
ing, Church, Post, Kleene and  others were interested in the 
study of what was computable, in principle. Now it would 
seem that in order to address this question, one would  have 
to specify the precise capabilities of the computer involved. 
However, it  turns  out that if you consider machines with 
a certain minimum computing capability, then all models 
of computation are equally powerful (in the sense of  com- 
putability).  This idea was formalized in 1936  by Church 
and Turing and is known as the Church-Turing thesis: 

Church- Turing thesis: Any computing device can be sim- 
ulated by a Turing machine. 

This is an important idea, because it means that we need 
not  study every  possible type of computing machine - we 
need only study  the model invented by Alan Turing. If 
something is computable (in principle), it is computable 
on a Turing machine. Note that  the Church-Turing thesis 
is a thesis and not a theorem. In order to prove this con- 
jecture, one would have had to define  precisely a model  for 
computing devices. But  the whole point of the thesis is that 
it applies to any computing device, and so we don’t want 
to limit ourselves  by specifying exactly  what a comput- 
ing machine must be. Nevertheless, the hypothesis is fairly 
self-obvious and in 63 years, no one has ever conceived of a 
counter-example. Moreover, there  are many models of  com- 
putation which have been proven to be Turing-equivalent, 
including those of Church, Post, Von Neumann, and others. 
So it pays to examine a Turing machine more  closely. 

3The material  in this section and  the remainder of this chapter, 
unless explicitly referenced, is part of the common knowledge. The 
interested  reader may find good  sources of further information in 
the following: Sipser [89], Feynman[48], Preskill[83], Shor [87], Be- 
nioff[l5], Ekert and Jozsa[44], and Garey and Johnson[52]. 
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A Turing machine consists of a head, which can be in one 
of a finite set of states Q, and a tape, which extends in- 
finitely in both directions, and on which the head can read 
or write a set of symbols or characters from an alphabet 
A.4 The head is  always pointing to one particular charac- 
ter on the  tape,  and can move left or right one step  at a 
time, to  the previous or next symbol on the tape. Finally, 
there is a rule which tells the computer what to do at each 
step, based upon the  state of the head and the symbol to 
which it is currently pointing. This rule is a function g of 
the form 

g : Q x A * Q x A x { L , R }  (1) 

That is, it maps a state of the head and symbol on the 
tape into a new state of the head, a new symbol on the 
tape,  and  an instruction to move to the left or  to  the right. 
This function therefore determines the behavior of the com- 
puter. Of course, the computer must begin with the head 
in an initial state and with an initial finite input  string 
of symbols on the  tape. By choosing various sets Q and 
A, various functions g, and  the initial conditions, one can 
make a Turing machine compute whatever one desires (as  
long as it is computable in principle). 

There  are two important results pertaining to Turing 
machines that we shall consider. The first is that there 
exists what is  known as a universal Turing machine. A 
universal Turing machine is one which has the capability 
of simulating the behavior of any  other Turing machine 
(and therefore any other computing machine in general), 
simply by modifying the initial input configuration of the 
tape. That is, the function g (and hence the set of states 
Q and  alphabet A ) is to remain k e d .  Moreover, what is 
perhaps more remarkable than  the existence of a universal 
Turing machine is that  it need not be very complicated: 
roughly 10 or 20 states and 10 or 20 symbols will ~uffice.~ 

The second result of interest is that there  are certain 
problems which cannot be solved on a Turing machine, and 
are therefore uncomputable. The most famous example is 
called the halting problem[93]. Normally, there is a special 
state of the head Q f  which  is the final, or  halting  state. 
Once the head  reaches this state,  the computer stops. The 
question is this: given a description of a Turing machine 
and the initial input on the  tape, can you determine if 
the machine will  ever halt? It turns  out in general that 
you cannot. (More  precisely,  you cannot build a computer 
which can solve the halting problem). The proof is simple 
and  runs as follows: Imagine a Turing machine H that 
solves the halting problem such that when given as input 
a description D of another Turing machine (and its input), 
H will halt if D does not  halt, and H will  go into an infinite 
loop if D does halt. Now what  happens if you  provide 
H as input  to H? The machine can neither halt nor not 

4Actually, what I’ve described here is only one example of a Turing 
machine. There  are many variations of  Turing  machines (for example, 
there  can  be multiple tapes),  but they’re  all  equivalent, so it doesn’t 
matter which one you choose. 

5The exact number depends on how the machine  is designed. Ac- 
tually, two states will  suffice if there  are many  symbols, and vice 
versa. 

halt: hence, one must conclude that  it is not possible to 
design H in the first place. The halting problem is therefore 
undecidable. 

One sees therefore that  the Turing machine  is a very 
useful concept: by analyzing Turing machines, one can (at- 
tempt  to) determine what is in principle computable and 
what can never be computed. However, in real life, one is 
generally interested in more than whether or not something 
can be computed in theory:  one wishes to know  how  long 
it will take, how much it will cost, etc. It may be possi- 
ble, in theory, to perform an ab initio simulation of each 
and every particle in my brain - but it is hard to imagine 
that  it will ever be possible in practice. Hence, as real life 
computers became more and more prevalent, the theory of 
computer science became more concerned with how long a 
computation would take.  One  thus arrives at a modified 
form of the Church-Turing thesis: 

Church-Turing  thesis  (Strong Form): Any reasonable 
computing device can be simulated by a Turing machine 
in a number of steps which  grows as a polynomial function 
of the resources used  by the device. 

Like the Church-Turing thesis in its weaker form, the 
strong form cannot  be proven. (Although it has been 
proven for just  about  any specific classical model of compu- 
tation that one can imagine). The statement is deliberately 
vague, with words such as “reasonable” and “resources” 
that are  open to interpretation. Still, it is clear when a 
computer is and when a computer is not reasonable. Un- 
reasonable machines  would include those that perform an 
infinite number of steps  in a finite time (for example, the 
Zeno’s paradox inspired device that performs each succes- 
sive operation in half the  time of the previous operation), 
or machines that require infinite precision  (for example, by 
storing an arbitrarily precise real number in the frequency 
of a single photon). Similarly, it is clear in practice what 
one should count as a resource. Certainly  time  and memory 
space are resources; precision or power  may also be. The 
important point to remember, especially when one exam- 
ines non-traditional  computing devices  (such as quantum 
computers), is that one  must be careful to consider all the 
resources  involved. 

Essentially, the strong form of the Church-Turing thesis 
says that all computing devices are polynomially  equiva- 
lent. This is important because it naturally divides prob- 
lems into two classes: those that can be solved in polyno- 
mial time,  and those that cannot. (A precise definition of 
polynomial time will be furnished below). If you provide an 
algorithm that runs  in polynomial time on any one  particu- 
lar  computer,  then this algorithm can be run in polynomial 
time on every computer. Likewise, a problem that requires 
an exponential number of steps on any particular computer 
will require exponential steps  on every computer.6 

61t’s worth  noting that  one experiences  these  theoretical  distinctions 
in  real life. For example, by describing an algorithm as O(n2),  I have 
already ignored the  constant speed difference (between, for example, 
my Pentium 9OMhz and my Pentium 400Mhz). Moreover, it may be 
that on the  Cray C90, which can process a whole vector of numbers 
at a single time, this algorithm  may not only run faster, it may scale 
more like O(n),  as opposed to O(n2) (at least for n within a certain 
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a m  
This division  between polynomial and exponential prob- 

lems  is  also  convenient  because it corresponds intuitively 
with our notion of efficient and inefficient algorithms. An 
algorithm that requires O(n) operations is certainly faster 
than one that requires O(n3),  but  both scale quite mod- 
estly compared to  an algorithm requiring O(2n) operations. 
In  the  later case, one does not need very large n before the 
problem  becomes impossible in reality, even if it is  com- 
putable in t h e ~ r y . ~  Polynomial-time algorithms are  there- 
fore  considered tractable; exponential algorithms are con- 
sidered intractable. 

For both of these reasons, one is frequently concerned 
with distinguishing polynomial-time algorithms from those 
that require exponential time8. Hence, one must have a 
precise  way of classifying algorithms. We say that a prob- 
lem can be solved with O ( f ( n ) )  operations if, in the  limit 
of large n, the required number of steps is bounded by 
c * f(n), where c is a fixed constant,  and n is the length 
of the  input  string. Since it is not very useful to describe 
an O(n) algorithm a s  0(2n), we normally try  to find the 
smallest f (n) which the required number of steps will ap- 
proach asymptotically. Note,  however, that as this defini- 
tion depends upon the length of the input, the computa- 
tional complexity appears to depend upon the manner  in 
which the input  string is written. We must therefore add 
an additional constraint, that  the input must be reasonably 
compact. For example, one can easily factor a number N 
in roughly O(&) operations - but because one would 
normally write down N with only n = log N digits, this al- 
gorithm is actually exponential in the size of the  input.  One 
could  specify the  input  to  the problem so that it required 
a string of length N instead of length n (for example, by 
indicating the value with a string of N zeroes  followed by 
a single one), in which  case a linear time algorithm would 
be straightforward. However, this would not be considered 
reasonable. 

The set of all problems whose complexity is asymptot- 
ically bounded by a polynomial function is  called P. Cu- 
riously,  while there  are many problems known to be in P, 
there are hardly any decidable problems which are known 
not to be in P. This is because it is  very  difficult to prove 
that a problem cannot  be solved  in polynomial time. Thus 
one is forced to make such statements as “there is no known 
classical algorithm for factoring in polynomial time”.  This 
is also  why it is  difficult to prove that a quantum  computer 
is more  powerful than a classical computer. Although we 

range - and all  real  computers with finite memory always have a 
limited range). But no reasonable computer will require exponential 
time for this problem. 

7John Preskill calculates that factoring a 400 digit number would 
take 1O1O years (roughly the age of the universe) using the best known 
classical algorithm  on state of the art computers, which can  factor a 
130 digit number in about one  month (using hundreds of worksta- 
tions). On the  other  hand, if  we had a quantum computer that could 
factor a 130 digit number in  one  month, it could factor the 400 digit 
number  in a few years - about 1O1O times faster! 

8 0 f  course, a problem can be worse than polynomial but  better 
than exponential, e.g., nlogn. However, it seems that most problems 
are not  in this intermediate range - and those that are, are usually 
(perhaps too casually) referred to  as “exponential” even when they 
are not. 

know a polynomial time  quantum algorithm for factoring, 
and even though the problem  is thought not to  be in P, 
there may in fact be a polynomial time classical algorithm 
that no one as yet has been  clever enough to discover. 

A broader class of problems, which contains many well- 
known problems that are  thought to be exponential, is 
called NP. The phrase NP stands for “non-deterministic 
polynomial” and means (strangely enough) that such 
problems can be solved in polynomial time on a non- 
deterministic Turing machine.  Not surprisingly, a non- 
deterministic Turing machine  is not a “reas~nable~~ model 
of computation, as discussed  above: it is a mathematical 
model, with convenient properties. Essentially, it is an or- 
dinary Turing machine which, at each step, can branch into 
multiple states  at  the same time. Pretty soon, there  are an 
exponential number of Turing machines following an expo- 
nential  (and rapidly growing) number of paths. It is said 
to solve the problem if only one single path finds a solu- 
tion. Clearly, one would expect that  an ordinary Turing 
machine (or any “reasonable” computer) would required 
an exponential number of operations to perform the same 
computation. 

One  can show that there is an equivalent (but less  pre- 
cise) definition of the class N P  which  is the following: The 
class NP is the set of problems for  which it is  possible to 
verify a potential solution in polynomial time. For  exam- 
ple, the factoring problem is believed to be exponential - 
but once provided with  potential  factors, it is quite easy 
to multiply them  and verify if they  truly  are factors, in 
polynomial time. Factoring is therefore in the class NP. In 
fact, almost all hard (i.e., exponential) problems that occur 
in  practice  are in the class NP. (One important exception 
is the class #P, to be discussed  beow).  Amazingly, there 
are  no problems that are known to be in NP and  not in 
P. We therefore arrive at the great  outstanding question of 
theoretical computer science: 

Does P=NP? 
Of course, almost everyone  believes that P # N P ,  but 

no one knows  for sure. 
In 1971, Stephen Cook  showed that a certain problem, 

the satisfiability problem, or SAT problem, is as hard a s  
any problem in NP[32].9 More  precisely,  he  showed that 
there is a polynomial time reduction from any problem in 
N P  to SAT.  Hence, if one could  find a polynomial time 
algorithm for SAT, one could  solve any problem in NP in 
polynomial time. Moreover, if there  exists just one prob- 
lem in NP that requires exponential time,  then SAT must 
as well.  For this reason the SAT problem is called NP- 
complete. Later, in 1972, Karp showed [60] that many 
other well  known problems, such as the traveling sales- 
man  problemlo,  are also  NP-complete. A huge amount 

QThere  are various versions of the SAT problem, but  the basic idea 
is the following: consider a boolean expression made  up of n variables; 
for example: (bl or b z )  and  not ( bl and b3 or  not b4) .  The question 
is, are  there a set of values for b l .  . .b, such that  the expression 
evaluates to  true (i.e., is “satisfied”). It  turns  out  that, in the worst 
case, there is no known algorithm that improves upon merely trying 
all of the (exponentially many) possibilities. 

‘OThe traveling salesman problem is the following: consider a sales- 
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of work has been done on the theory of NP-completeness 
since Cook and  Karp,  and now hundreds of problems are 
known to be NP-complete[52]. A polynomial time solution 
to any one of them would  imply that P=NP (and a great 
deal of fame). Conversely,  once a problem is shown to be 
NP-complete, it is clear that a polynomial time solution is 
unlikely to  be found. Interestingly, it  turns  out  that prac- 
tically every naturally occurring problem in NP (and most 
naturally occurring problems are in NP) is either  in P or 
is NP-complete. The class NPI (for NP intermediate) ap- 
pears to be quite lonely. In  fact,  this  author is aware of 
only three problems that are  thought to be in NPI: integer 
factoring, graph isomorphism, and  certain versions of the 
short vector problem. This is unfortunate because prob- 
lems in  NPI  are good candidates for quantum algorithms: 
they  are  not as hard as NP-complete problems, but they 
still (are  thought to) require exponential time on a classical 
computer. 

Finally, there is one last class of problems which  will be 
discussed here, known as #P. Problems in the class #P 
include those that ask for the exact number of solutions to 
an N P  complete problem: for example, how many (of the 
n!) paths that visit each of n cities have length less than I? 
It is self-evident that  the class #P contains the class NP, 
and intuitively, it  appears to be  much larger. (But  this is of 
course an open question). The class #P will be addressed 
later in the context of nonlinear quantum algorithms. 

C. Classical gate arrays 

Although the theory of computational complexity is  ma- 
chine independent, it is often  useful to have a particular 
computational model in mind. This is especially true when 
considering the physics of computation. For these pur- 
poses, the classical gate array (and  later,  quantum  gate 
array) is convenient. 

Every computational problem can be viewed as a func- 
tion that maps an input  string (which we shall represent 
in binary) to an  output string (which may also be repre- 
sented in binary). In  fact, one can consider each bit of the 
output  string separately, so that a computer program can 
be viewed quite generally as a function f which maps n 
bits  into a single bit: 

f : B n = = + B  (2) 

where B is the set of possible boolean values ( 0 , l ) .  A logic 
gate is just a simple computation; for example, the NOT 
gate is the function on a single bit such that 

NOT(a) = { } 0;  a = l  
1; a = O  

Two bit  gates  are just slightly more interesting; for ex- 

man who  must visit a set of cities, and would like to  do so in the most 
efficient manner. Given a list of cities (and  their locations), find the 
shortest  path which visits each of the cities. This is often cast in 
an  alternative manner, as a decision problem, by asking if there is a 
path of length d or less (that visits all the cities). 

ample 

0; (a  = 0) OT ( b  = 0) 
= { 1;   (a  = 1)  and ( b  = 1)  

Once we have a set of logic gates, we can begin to build 
more complicated computations by designing a gate  away. 
In a gate array, we apply a sequence of logic gates, one after 
another, to  the original input  bits or to  the outputs of the 
proceeding gates. For any given algorithm, the design of 
the  gate  array is  fixed; we vary the input  bits, the gates  are 
applied in series, and the result is obtained. Of course, if 
all of our gates  return only a single bit, we will not be able 
to build a very interesting (or very long) computation. So 
we will  need some gates that return more than one value; 
for example, COPY (or FANOUT): 

COPY(a)  = a €3 a (5) 

An important  and  natural question that arises is the fol- 
lowing: is there a universal set of gates? In other words,  is 
there a set of gates from which one can build any computa- 
tion, as long as the gates  are applied correctly? In  fact, the 
set of gates described above is a universal set: with AND,  
NOT, and COPY, one can compute any function that is 
computable.’l 

Since the gate  array  has been shown to satisfy the weak 
form of the Church-Turing thesis, one may  ask if it satisfies 
the strong form. In  this case, the relevant computational 
resource is the number of gates. How does the number of 
gates scale with the length of the input?  One needs to 
be careful here, because any particular  gate  array is of a 
fixed  size: if the length of the input is increased, then a 
larger gate  array will be required. But it may be that  the 
designer of the  gate  array can perform some of the work 
required to solve the problem. Hence we require that  the 
gate  array is  sufficiently regular - that is, that  the gate  array 
can be designed with a polynomial-time algorithm. With 
this restriction, it is possible to prove that gate  arrays  and 
Turing machines can simulate each other  with only poly- 
nomial overhead. A polynomial time algorithm requires 
a polynomial size gate array, and vice  versa. Thus, one 
can prove that gate  arrays satisfy the strong form of the 
Church-Turing thesis. 

D. Physics of classical Computation 

As has been emphasized throughout  this  thesis, comput- 
ers are physical devices and must obey the laws of physics. 
One is thus  naturally driven to consider if there may  be 
physical limitations to  the power of computing machines. 

l l I t  is easy t o  see why these  gates  are universal. First, recall that 
a computation is just a function of the form f : Bn -r B. The  set 
of possible input  strings is therefore divided into two classes: those 
that  return  true,  and  those  that  return false. Thus,  the computation 
returns false except for on a certain (enumerable) set of possible in- 
puts. With A N D  gates  and NOT gates  it is easy to  determine if the 
input is any particular  string.  With OR gates, we can  then  determine 
if the  input is a member of the  set which should return  true. While 
this technique  is by no  means efficient, it shows that  the  gates  are 
universal. 
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This consideration appears to become  more and more sub- 
stantive as computers become smaller and faster. How long 
can Moore’s  law12 continue? Will quantum mechanics in- 
terfere with our ability to compute? 

If one looks again at the gates described in the previous 
section, an interesting and  important observation can  be 
made: the usual fundamental logic gates  are irreversible. 
Given the  output of an AND gate, for instance,  it is impos- 
sible to determine what  inputs were provided. Of course, 
the gate as described previously takes as input two bits and 
generates as output only a single bit, so it obviously cannot 
be reversible. But even if the gate is modified to output 
two bits - that is, the  output of the  AND function and  an 
additional output bit for the purposes of reversibility - it 
still cannot be made reversible. In  the case of AND, there 
are  three  inputs - (0,O) , (O,l),  and (1,O) - which all gener- 
ate  the same output (0) for the  AND operation. A single 
additional output bit is therefore insufficient to make this 
gate reversible. Indeed, one will  find that  this is the case 
for all of the  standard logical operations. 

The irreversible nature of standard logic gates leads one 
to an  important thermodynamic consideration. Since the 
action of each  logic gate must contract phase space (or, al- 
ternatively, decrease the system’s entropy),  there must be 
a corresponding entropy increase taking place outside the 
computer. This therefore leads one to  the (incorrect) con- 
clusion that each fundamental computer operation requires 
one to do work. 

In 1961,  Rolf Landauer clarified and corrected the previ- 
ous statement[62]. What requires energy is not logical op- 
erations,  but erasing information. One must do work equal 
to  kBTln2 for each bit of information that is discarded. 
This is  known as Landauer’s principle. In  the previous 
example, a single bit is lost during the  AND operation, 
and so the result is the same (kBTln2 heat generated). 
However, I’ll show in a moment that  it is  possible to per- 
form  reversible  logic, in which  case there is  no fundamental 
energy limitation per gate. But  it is worth noting that or- 
dinary computers do  not employ reversible logic, and  that 
the limit of kBTln2 per operation could eventually pose 
problems. While even the tiniest and most  efficient com- 
puters  today  are  still many orders of magnitude from this 
limit, it should  be obvious that if the size of transistors 
continues to shrink at an exponential rate,  it will not take 
long  before thermodynamic considerations will dominate. 
Eventually, computers will  need to be made with reversible 
logic if they are to be made faster.13 . 

The next critical step came in 1973 when Charlie Ben- 
nett showed that all computations  can be carried out with 
reversible  logic gates[l6][17][18][19]. The number of steps 
taken by the reversible computer was a polynomial func- 
tion of the number of irreversible operations required, and, 
depending upon the model of computation used (i.e., one- 
tape Turing machine, multi-tape Turing machine, gate ar- 

12Named after  Gordon Moore of Intel, it states that computers 

131f the current  pace of progress continues, the fundamental limit 
become twice as fast  roughly every 18 months. 

of irreversible computation will be reached in roughly 6W30 years. 

ray, etc.), the overhead  could be only a constant  factor. Be- 
cause reversible classical computation is  closely related to 
quantum  computation, we’ll examine reversible  logic gates 
in more detail. 

First,  note that  the  NOT gate is reversible, and  that 
in general, a reversible gate must  have as many outputs 
as it  has  inputs. While AND  and O R  cannot be made 
into reversible 2-bit gates, the X O R  gate can be cast in a 
reversible form: 

Feynman calls this X O R  gate a “controlled-NOT”, be- 
cause it flips the second bit if and only if the first bit 
is 1. The controlled-NOT is a convenient gate,  and one 
employed frequently in  quantum  computations. Unfortu- 
nately, it is not universal, i.e., the controlled-NOT is in- 
sufficient  for building an  arbitrary classical computation. 
In fact, one  can prove that no set of (classical) two bit re- 
versible gates is universal. Fortunately, one needs only a 
single 3-bit gate in order to perform universal reversible 
logic. Two famous examples of 3-bit gates that suffice are 
the F’redkin and Toffoli gates [51]. The F’redkin gate has an 
additional curious property in that  the number of ones and 
zeros does not change  between the  input  and  the  output. 
This was useful  for  F’redkin,  who was interested in showing 
how one could build a universal computer with a classical 
“billiard ball” model. 

The F’redkin gate can be  thought of as a controlled ex- 
change: if the first bit is 1, then exchange the positions 
of the second and  third  bits. Otherwise, do nothing. The 
truth table  appears as follows: 

If one is given a supply of fresh ones and zeroes, the 
Fredkin gate can be made to simulate any of the usual 
irreversible two bit gates. With this in mind, it is  rela- 
tively easy to see how one can replace ordinary irreversible 
logic gates  with reversible gates such as the Fredkin gate. 
In each step of the computation, extra “garbage” bits  are 
introduced. These bits  are not required for future steps, 
but only so that one can retrace the backward path,  to 
satisfy the constraint of reversibility.  However, it appears 
that  the number of garbage bits will  grow quite quickly 
(possibly, one for each step of the computation),  and  this 
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led some early critics to suggest that reversible comput- 
ers were in some sense hiding entropy in the garbage bits. 
Fortunately,  there is a useful trick (due to Bennett) which 
prevents garbage build-up[l9]. For any computable func- 
tion f acting on a bit string 2, one can always perform 
the following transformation reversibly: 

The transformation is  obviously reversible on a macro- 
scopic  scale: since the bit string 2 is part of the  output, one 
can easily reconstruct the  input.  The problem is, can one 
transform an ordinary irreversible algorithm for calculating 
f ( 3 )  into a reversible  one such that it does not  generate 
any extra garbage bits (as  in the equation above). Ben- 
nett’s trick is the following:  follow the course of the orig- 
inal irreversible algorithm, generating garbage bits along 
the way, to maintain reversibility. Once the answer has 
been obtained, make a copy of the answer. (This is easily 
accomplished with a sequence of controlled-NOT gates). 
Then reverse all the steps which  were  used in the original 
calculation, thereby cleaning up the garbage. One is thus 
left with simply the original input 3 and the copy  of the 
answer f(?), as desired. This simple trick is quite useful, 
and we shall employ it frequently (and variations thereof) 
in the design of quantum algorithms. 

Because of the work of Bennett, Fredkin, and  others, we 
have a detailed understanding of  how to perform arbitrary 
computation using the fundamental principles of classical 
mechanics. It was therefore natural to investigate how  com- 
putation is possible with quantum systems. Paul Benioff, 
in a series of important  papers, first showed how to  design 
quantum mechanical models of computation[ll][12][13][14]. 
Feynman [47][46]  also did important work in this  area, as 
did Margolus (72][73][74]. They described how one could 
build Turing machines, gate  arrays,  and cellular automata, 
and showed that, with the proper Hamiltonian, the sys- 
tems could be made to time-evolve in such a way that a 
computation was performed. Feynman [46]  was the first to 
speculate that a quantum computer might in principle be 
more powerful than a classical computer: in particular, he 
thought that perhaps a quantum computer could be used 
to efficiently simulate other quantum systems (a conjecture 
later proven by  Lloyd [68]). Thus one arrives naturally at 
the topic of quantum computing, which  will be discussed 
in the following chapter. 

11. QUANTUM  COMPUTERS 

A.  Quantum bits 
l4 The fundamental unit of quantum information is  the 

quantum  bit, or q~bit[85]’~. Mathematically, a qubit is 

‘*As with the previous chapter,  the material covered herein, un- 
less explicitly referenced, is part of the common knowledge. The 
interested  reader may find good sources of further information  in the 
following: Sipser[89], Feynman[48], Preskill[83], Shor[87], Benioff[l5], 
Ekert and Jozsa[44], and Gaxey and Johnson[52]. 

15Like the word “bit”,  the word “qubit” is used to refer both t o  an 
amount of information and  to  the physical system that registers that 
information. 

simply a ray in a two-dimensional Hilbert space: it r e p  . , 
resents the quantum state of a two state system, just as a 
classical bit represents the classical state of a two state sys- 
tem. Physically, a qubit may be  stored in many different 
ways:  for example, with a photon polarization, two states 
of an  atom, or the spin of a particle. Whatever the ac- 
tual physical system may be, we shall always write the two 
states  as 10) and Il), thus indicating the correspondence 
between  classical and  quantum bits. 

The general state of a single qubit is I$) = o 10) + P 11); 
since (aI2 + IPI2 = 1, and the absolute phase is not physi- 
cally observable, the general state is described by two real 
numbers. A classical bit, on the other  hand, is described 
by (simply) a classical bit. Even an analog or  “fuzzy7’ bit 
requires only a single real number for its description. Still, 
it is not  apparent how much of the information in the qubit 
is truly “available” , and even with a single quantum bit one 
can see that  the question of how one “gets the information 
out7’ is not  trivial. Given many copies of the  state I $ ) ,  
one can make a series of measurements to determine (or 
approximate) o and p.  However, with a single preparation, 
information will be lost during the measurement process. 
One might be tempted to think that by being  sufficiently 
clever one could take a single preparation of I+) and make 
multiple copies, but  this is not possible. There is a theo- 
rem due to Wooters and Zurek [loo] which says that one 
cannot copy a quantum state  (the “no-cloning” theorem). 

The  situation becomes more interesting when one has 
multiple qubits. While a single two-state system is de- 
scribed by a wavefunction of the form l$) = o 10) + P ll), 
a pair of two-state systems is described by a ray in the 
tensor product space: 

I*) = a00 IO) 8 IO) + a01 IO) 8 11) + a10 11) 8 10) + a11 11) 8 11) 
(9) 

Whereas two classical bits  still require only two classical 
bits for their description (or two real numbers if they are 
analog), the two qubit system is described by 6 real num- 
bers. We see that in general, an n qubit system is described 
by 2n+1 - 2 real numbers. For those who are interested in 
calculating the properties of quantum systems, this expo- 
nential growth is unfortunate; but for those who are inter- 
ested in using quantum systems to calculate, this property 
provides the fist step  toward a more powerful computer. 

The 2n different basis vectors which are generated by 
taking  tensor  products of the  states 11) and 10) form the 
canonical basis. There are a few different notations to de- 
scribe these basis vectors. Using one of the 16 basis states 
for n = 4 as an example, we may write, depending on the 
situation, 

I @ )  = 10) €9 11) @ 11) €9 10) (10) 
= 10) 11) 11) IO) (11) 
= lOll0) (1‘4 
= 16) (13) 

where in the  last  equation the state is labeled according to 
the integer which represents the qubits viewed as a single 
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binary number (i.e., 610 = 01102). This last notation is 
the most  dense; an  arbitrary  state of an n qubit system is 
merely 

4 

i=O 

which  is an expression that will occur frequently. 
As with the single qubit system, there is a question of 

how one can access the information hidden in the  state, 
only now the problem is more severe. Measuring the qubits 
will only reveal a single n bit integer i with any particular 
result occurring with probability jail . There may be an 
exponentially large amount of information stored in the 
state of a quantum  system,  but  it is not  at all obvious how 
it is to  be exploited. 

6 

B. Quantum gate arrays 
Having thus described how quantum information is 

stored, the next issue one must address is  how it is to be 
processed. The most natural way to compute with a set of 
quantum  bits is with a quantum  gate array. 

A quantum  gate is a  unitary transformation acting on 
one or more qubits. Essentially, we imagine that  the Hamil- 
tonian for all the other  qubits  (upon which the  gate does 
not  act) is zero; the qubits involved in the gate will time- 
evolve according to their local Hamiltonian. One important 
but limited set of gates  are  those which simply map one 
member of the canonical basis into  another; for example: 

which is simply a quantum version of the controlled-NOT 
gate. If these basis states are ordered in the  natural way 
(according to the binary number represented), one can 
write the transformation  as a matrix 

[ : ; :  :] 1 0 0 0  

0 0 1 0  

which  is manifestly unitary. It should be easy to see that all 
classical  reversible  logic gates correspond to permutations 
as above; assuming that it is possible to generate any de- 
sired unitary transformation, one therefore concludes that 
a quantum  gate  array can perform any computation that 
a classical gate  array can. The  qubits are initialized in 
the same manner as the classical bits; the calculation is 
performed  using the quantum counter-parts of the classi- 
cal gates. Throughout the entire calculation, the  state of 
the quantum computer is always one of the canonical basis 
states: it is  never  in a superposition of multiple basis states 
or an entangled state. There is no  difficulty  in reading the 
result. Thus a quantum computer can be easily made to 

mimic a classical computer, and the quantum computa- 
tional complexity is  no  worse than  the classical computa- 
tional complexity. It follows that classical computation is 
(in a very real sense) just a limiting case of quantum com- 
putation. 

Frequently during a  quantum calculation, one desires to 
perform a classical computation. For example, one may 
wish to do a transformation such that 

As long as an algorithm exists for computing j (T) ,  this 
transformation can be performed  using quantum logic 
gates. Moreover, the quantum algorithm is the same as 
the reversible classical algorithm, which, as discussed in 
the previous chapter, is essentially the same as the original 
(presumably irreversible) algorithm. 

C. Universality 
Of course, permutation matrices of the  sort described 

above are only a small subset of all  possible unitary  trans- 
formations. For example, the single qubit  transformation 

has no classical analogue. This  transformation  (and, in par- 
ticular,  its multi-qubit extension) is known as the Walsh- 
Hadamard transform. It is common for quantum algo- 
rithms to make frequent use of this  gate. 

A natural question to ask is whether or not  there exists a 
set of universal quantum  gates, which can be combined to- 
gether to form any possible unitary  transformation. Since 
there  are an infinite number (continuum) of unitary  trans- 
formations on even a single qubit,  this problem  is a bit more 
subtle than  the corresponding classical  problem.  However, 
since any real physical system will posses only finite ac- 
curacy, it should be sufficient to find a set of gates which 
can be applied so that they will generate  an n bit unitary 
transformation that is arbitrarily close to any desired n 
bit  unitary  transformation. Fortunately, such gates exist 
[SI [39][43][69]. In fact, Lloyd has shown that almost any 
2-qubit gate is sufficient  for generating arbitrary  unitary 
tran~formations[69]'~.  This later result is important be- 
cause it means that one doesn't need to worry  much about 
what  type of interaction Hamiltonian exists between pairs 
of qubits: almost any interaction will  do. 

A general unitary transformation on n qubits is described 
by 0 ( 2 2 n )  complex numbers. It is therefore not too sur- 
prising that a general n qubit  unitary  transformation will 
require an exponential number of gates. Since a quan- 
tum computation is nothing more than a series of unitary 
transformations - which  when multiplied together  are just 
one very complicated unitary  transformation - this implies 

161t is interesting to note  that only  tw+qubit gates are  required 
for  universal  quantum computation, whereas threebit  gates were  re- 
quired  for  classical  reversable  logic 
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that most computations will require an exponentially large 
number of gates. One of the main  goals  in designing a 
quantum algorithm, therefore, is to see if it is possible to 
effect a desired n qubit  unitary transformation using only 
a polynomial number of quantum gates. 

The class of problems which can be solved by a quantum 
gate  array of polynomial size  is  called  BQP17. In order for 
this class to be well-defined, it is important that it should 
not depend upon the choice of gates; moreover, it should 
also correspond to polynomial-time complexity  for other 
models of quantum  computation, such as quantum Tur- 
ing machines. It is clear that quantum  gate  arrays  must be 
polynomially equivalent because once one has a set of (con- 
stant sized) circuits to effect any desired  two qubit  unitary 
transformation,  all  gate  arrays will look the same. In 1993, 
Yao showed that quantum Turing machines and  quantum 
gate  arrays were polynomially equivalent [loll. Moreover, 
we know that any physically realistic quantum computer 
can simulate any other with only a polynomial overhead, 
because a quantum computer is nothing more than a phys- 
ical system,  and Lloyd has shown [68] that  there exist uni- 
versal quantum simulators. The class BQP is therefore 
quite robust: indeed, one could argue that  the  quantum 
version of the Church-Turing thesis is a consequence of the 
laws of physics as they  are known today. 

The formalism described previously is based upon a sys- 
tem composed of a set of individual qubits. However, one 
may wish to consider a set of three level systems (a  qu-trit), 
or even n level  systems.18 The mathematics are likely to be 
more complex, but one would hope that  the fundamental 
results should not be effected any more than  in  the classi- 
cal case, where using trits  or analog components are of no 
impact in terms of computational complexity. In  fact, our 
quantum formalism is not sensitive to  the makeup of the 
individual subsystems. The  state space of the combined 
system is the tensor product of the  state spaces for each 
individual component system. This is physically  reason- 
able: one can only store so much information in a single, 
local, quantum  system,  and a reasonable model of com- 
putation must combine many such subsystems. Moreover, 
this is how the  quantum computer gets its power - by 
virtue of the exponential growth in the size of the Hilbert 
space with respect to  the number of subsystems which are 
combined. As long as it is possible to perform an arbi- 
trary  unitary transformation on two subsystems at a time, 
it is evident that  the model  will be universal;  conversely, 
one can represent the  state of any subsystem with a col- 
lection of one or more qubits,  and since the  qubits can be 
made to evolve according to an  arbitrary  unitary  transfor- 
mation, the more complex system will  have no additional 
computational power. In some  sense, it is the process of 
decomposing a large quantum computer into component 
subsytems that allows  us to employ the gate  array model. 

All quantum algorithms consist of three steps: First, ini- 
tialize the computer into the  state (00 ... 0); second, perform 

17BQP  stands for bounded  error quantum polynomial time. 
18The  situation is somewhat more complicated if the  quantum vari- 

ables are allowed to  be continuous. See Lloyd and Braunstein [70]. 

a unitary  transformation (which is generated through a se- 
quence of unitary  transformations); third, make a measure- 
ment of the computer’s state with respect to the canonical 
basis. From this description, one can see that is not possi- 
ble  for a quantum computer to perform any computations 
that  are classically uncomputable; a Turing machine can 
easily simulate a quantum  computer, as long as it is  al- 
lowed exponential overhead 19. The quantum  theory of 
computation does not therefore have any impact on what 
can be  computed, only on how long a computation will 
take. 

D. Introduction to quantum algorithms 

In 1985, David Deutsch suggested the idea of quan- 
tum parallelism [40][41]:  by placing a computer in a su- 
perposition of input  states,  it could in some sense perform 
a large number of computations at the same time. Al- 
though his original work  was with  quantum Turing ma- 
chines, the essential idea can be easily seen with the gate 
array models discussed thus far. Consider a quantum com- 
puter  with 1 = 2n  qubits, which we  will conceptually di- 
vide into two distinct registers of n qubits each. The ini- 
tial  state of the computer will be the zero state, that is 
I + )  = 10) €4 10) €4 ... €4 IO); we shall also write this  state 
as I$) = lO,O),  that is,  by labeling the  state with the two 
integers that represent the two n qubit registers. 

We operate  on each of the first n qubits with a Walsh- 
Hadamard  gate,  thus  obtaining: 

I + >  = & (10) + 11)) @ & (10) + 11)) €4 *.* 

€45 (IO) + 11)) @ (0)  €9 ... @ IO) 

- 2n-1 

= - l i , O )  1 
-6 
v u  i=o 

As in  equation  (20), one can perform a transformation 
1 3 ’ )  10) + 1 3 ’ )  lj(T)) for any computable function f .  
However, since the input register is in a superposition state, 
one now obtains 

2n-1 

One thus calculates the value of f ( i )  for all 2n possible 
inputs,  without performing any more elementary gate o p  
erations than were required to classically calculate f ( i )  for 
a single value. Unfortunately, it is not clear if this ac- 
complishes anything: making a measurement on the system 
will return only one f ( i )  chosen at random. Thus a quan- 
tum algorithm will  accomplish nothing unless it exploits 
interference; one must perform another  unitary  operator 
after equation (24)  such that  the various paths interfere 

19A priori, one might assume that a classical computer would re- 
quire exponential memory resources to  simulate  the behaviour of a 
quantum  computer.  It is thus interesting to  note  that a classical 
computer  can  simulate a quantum  computer  without requiring expo- 
nential memory, as long as it is allowed exponential  time [21]. (See 
also [83]). 
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with one another. Hopefully, after this additional, inher- 
ently non-classical operation, one may  be able to make a 
measurement on the resulting state and learn some joint 
property of all the f ( i ) .  It took seven years to make fur- 
ther progress; but in 1992 Deutsch and Jozsa showed the 
first example of a problem in which quantum parallelism 
could be exploited to obtain a super-classical speedup[42]. 
Soon after, Bernstein and Vazirani (211 showed the first 
exponential separation between a quantum  and classical 
algorithm (i.e., a problem for  which there is a polynomial 
time  quantum algorithm but no polynomial time classical 
algorithm).20 A year later, in 1994,  Dan  Simon  provided a 
more elegant problem with an exponential separation [88], 
which led directly to Peter Shor’s 1994  discovery of the 
factoring algorithml861. 

Both Simon’s algorithm and the Bernstein and Vazirani 
algorithm rely upon a black box function, which is called 
an oracle.21 The oracle is  provided an input value z (ei- 
ther classical  or quantum) from which it computes f(z); 
however, one is not allowed to look inside the oracle (thus 
“black box”) to see how it does the  actual computation. 
One wishes to determine how many calls to  the oracle are 
required to determine a specific property of the function 
f(z). It is possible in this context to prove that a quan- 
tum computer is more efficient than a classical computer, 
as in the previously mentioned papers. Such a result is said 
to be “relative to  an oracle”, and such a proof is said to 
be “relativised” . While these relativised results are inter- 
esting, and  indicate that a quantum computer probably is 
more  powerful than a classical computer, they  are  not as 
compelling as a non-relativised speedup. (Unfortunately, 
while the Shor algorithm does not rely upon an oracle, it 
is  also not proven to be faster than a classical algorithm 
- it is still possible that someone  will  discover a classical 
algorithm that is just as fast). 

One can gain insight into the meaning of the oracle re- 
sults by considering Grover’s algorithm [55] [56].(Grover’s 
algorithm will be discussed in detail in Chapter 4). In the 
most  basic  version of Grover’s algorithm, one is  given  (in- 
side a black box) a boolean function f(z) over an n bit 
input such that  the function return zero  for all values  ex- 
cept for a single value zo; one wishes to determine what 
the value of zo is. For this reason, it is  called a “database 
search.” With no additional information, it is readily ap- 
parent that a classical algorithm can do no better  than to 
try values of z until it finds the solution; on average it will 

20The Deutch-Josza problem, while difficult to solve on an ordinary 
Turing machine, is easy to  solve on a probalistic Turing machine. A 
probabilistic  Turing machine, loosely defined, is an ordinary  Turing 
machine that has  a  built  in  generator of random bits,  and  that is not 
required to  solve the problem 100% of the time. The class of problems 
that can be solved in polynomial time on a classical probabilistic 
Turing machine is known as BPP,  and corresponds most closely with 
our  intutive notion of which problems are  tractable in reality. It is 
interesting to  note that  there  are a lot of open questions  regarding 
the class BPP and its relation to  other classical complexity classes; 
for example, does BPP = PSPACE? 

21A black box function is  not precisely the same thing as an oracle, 
but  the two terms  are used to mean the  same  thing in the  quantum 
computing  literature, because the black box is essentially the  same 
as a Turing machine with an oracle. 

take  time %, where N = 2n is the  total number of possi- 
ble  values of x .  In 1996,  Lov Grover showed how this can 
be  solved with a quantum algorithm in  time a: not an 
exponential speedup, but still impressive considering the 
fundamental nature of the problem. The problem  is that 
the classical estimate of 9 is predicated on the assump- 
tion that one cannot look inside the black-box.  However, 
if the computer is to execute the code required to calcu- 
late f(z), then  that code must be available, so restricting 
an algorithm from examining the function is an artificial 
constraint. Once this constraint is removed, it is  no  longer 
possible to know  how many operations are required to find 
the solution: it might be that a sufficiently  clever algorithm 
could  look at the code  which calculates f ( x )  and determine 
the solution right away, without having to  try any values of 
x .  Thus  it is only possible (so far) to prove that a quantum 
algorithm is faster than a classical algorithm in a context in 
which both of the algorithms are in some  sense restricted. 
On the  other  hand,  the power  of the quantum computer is 
readily apparent in the fact that Grover’s algorithm does 
not need to look at the function; the f i  speedup is com- 
pletely independent of the form that f(z) takes. It seems 
clear that  the quantum computer is somehow  more  power- 
ful than  the classical machine, even if we are unable as yet 
to prove it.  This viewpoint is most convincingly argued by 
considering that - while it may be in  theory possible  for 
an efficient classical algorithm to analyze the function f(z) 
and find the solution - it seems extremely unlikely that 
such an algorithm would exist for an arbitrary f(z). 

It is worth noting that Grover’s algorithm is known to be 
optimal [ZO]. It thus follows that if quantum computers are 
to solve NP-complete problems in polynomial time, it will 
require a deep insight into the  structure of NP-complete 
problems that can be exploited by a quantum computer. 
Such an insight is  unlikely to  be forthcoming. Indeed, 
just as the oracle model  allows one to demonstrate super- 
classical speed-ups, it also allows one to demonstrate quan- 
tum lower bounds. In addition to  the result just mentioned, 
it has been proven that  the problems of mean and median 
estimation admit only a quadratic speed-up [76], that find- 
ing the parity of n boolean values admits only a constant 
speed-up [45], and that, in general, almost all functions 
admit only a factor of two speed increase [8]. While these 
results demonstrate that one cannot in general make an 
algorithm faster with “quantum magic’’, and while they 
do limit the possible applications of quantum computers, 
they also help to clarify which interesting problems  have 
complexities that may be significantly improved. 

E. Simon and Shor algorithms 

Simon’s algorithm [88]  is a prototypical example of a 
quantum algorithm. Because it is not necessary for the re- 
mainder of the thesis, the reader may skip this section, if 
desired. It has been included, however,  because it is the 
cleanest and clearest demonstration of the power of quan- 
tum computing. It also forms the basis of Shor’s factoring 
algorithm [86], which  will  be discussed briefly at the con- 
clusion of this section. 
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In Simon's problem, one is given a 2 -, 1 function that 
maps an n bit string  into  an n - 1 bit string, with the 
following special property: 

f ( i )  = f ( j )  +=+ i @ j  = c (25) 

where the @ indicates addition over the group Bn-l. (In 
other words, each bit is added independently, without 
carry, with 1 @ 1 = 0.) (Alternatively, this addition can 
be seen to be a bitwise XOR of the two n - 1 bit strings). 
Note that this special type of addition has the interesting 
property that 

for any i and j .  The function f is therefore periodic, in the 
sense that f ( i )  = f ( i @ c )  = f ( i @ c @ c ) ,  etc. One is given 
an oracle (black box)  which computes f for any  input i. 
The problem is to determine the value of c, with as few 
operations (or calls to  the oracle) as possible. 

It is easy to see that classically, there is no better al- 
gorithm than randomly guessing values of i and querying 
the oracle until the function returns  the same result twice 
(at which point one determines e). Since there  are 2"  val- 
ues of i, it is also easy to see that  this algorithm requires 
exponential time. The quantum algorithm, however,  will 
run in polynomial time.  First, we generate a state as in 
(24). Note that  this requires only a single call to  the quan- 
tum oracle. Next, we make a measurement of the second 
register.22 This will result in a state of the form 

I$) = - ( 1 %  f ( a ) )  + la @ C7 f ( a > ) >  

for a particular value of f ( a )  chosen at  random.  This is be- 
cause there exist two  values of i which correspond to every 
possible  value of f ( i ) .  Since the system is now in a super- 
position of two states which  differ  by c, it would  seem to be 
an easy matter to determine the answer. However, measur- 
ing the  state would reveal just one value, either a or a @ c, 
and if we were to repeat the experiment, we  would obtain 
a different (random) value of a. The information is indeed 
contained within the  state of the quantum  computer,  but 
it is hidden in a way  which  makes it difficult to extract. 
It is therefore necessary to do something more clever. The 
trick is to generate interference between the states by per- 

1 

4 (27) 

We factor out  the pure state I f ( a ) )  of the final n - 1 qubits . , 
because it is no longer relevant to  the computation. It will 
be omitted  in  what follows  (i.e., we  will only consider the 
state of the first n qubits). We  now perform an opera- 
tion similar to  the Walsh-Hadamard transform that causes 
10) * 3 (10) + 11)) and 11) * (10) - 11)). 

I$> - " (-l)u'i + (-l)(u@c)'i] (30) 
i = O  

This  step requires perhaps a small amount of explana- 
tion. Any state la) will be transformed into an equally 
weighted superposition over all li). However, the phases 
of the components are determined by la): for every 
qubit where la) is originally 11) and li) is also Il), we 
pick up a phase of (-1). Hence the  state la) maps 
into -& li) (-l)u'i and the  state I$) transforms as 
above. The second step simply reflects the realization that 
the only terms in the  sum which will not cancel are those 
for  which c .  i = 0. 

A measurement of the system will  yield a state li) chosen 
at random such that c . i = 0. In contrast to  the situation 
in equation (27), a measurement now reveals information 
about the value of c, which  is the objective. Indeed, only 
O(n) trials  are necessary to determine n linearly indepen- 
dent vectors i such that c .  i = 0. From these,  one  can easily 
determine c. The  quantum algorithm is therefore exponen- 
tially faster than  the best classical algorithm. 

The Shor algorithm works in essentially the same way. 
It has been known since 1976 that  the problem of factor- 
ing n can be reduced to  the problem of finding the or- 
der of xmodn,  that is, the least integer r such that xT = 
l(mod n). If one considers the function f ( a )  = xu mod n, 
the order r is simply the period of this function. The 
Shor algorithm proceeds exactly as the Simon algorithm 
described above, with two differences: First, the function 
f ( a )  = xu mod n is  different  from the function used in Si- 
mon's problem. Second, the Walsh-Hadamard transform 
used in the  last  step to  find the period of the function 
over the group Bn-l is replaced with a quantum Fourier 
transform [33] that finds the conventional period over the 
ordinary multiplicative group (which is the order T ) .  More 
detailed discussions of the Shor algorithm can be found in 
[86], in [87], and in the review by Ekert 1441. 

2n-1 

- 
forming an operation such as the original Walsh-Hadamard F. Accuracy and errors 
transform on the first n qubits. First, we shall rewrite the 
state of the system in a slightly different form 

" 

Unlike modern digital computing machines, quantum 
computers are analog devices.  While on a superficial level 

I$) = (1'7 f(')) " l a  @ '7 f ( ' ) ) )  (28) information is stored in  the phases of the states,  and  these 
are complex numbers. It is important therefore to con- 

= [z ( la)  + la @ c ) ) ]  @ I f ( a ) )  (29) sider what level of precision is required. For example, it 
is  known that a classical analog device with exponential 

221t is not actu&ly necessary to perfom this  measurement; how- Precision Can  Solve NP-complete problems in polynomial 
ever, it makes the algorithm appear simpler. time; however, exponential precision is not considered to 

1 it may appear that  the qubits themselves are  digital, the 

1 
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be reasonable. It is therefore important  to determine  what 
level of precision  is required of a quantum  computation. 

A quantum algorithm is nothing more than a series of 
unitary  operators applied to  an initial state, 

I$,) = UTI . . .U~~~UI  /$I)) (32) 

followed  by a measurement of the final state  (made with 
respect to the canonical basis). Let us suppose that at each 
step of the computation,  the  unitary  operators which we 
perform are not exactly the operators which  we intend.23 
Alternatively, we can imagine that there is a  little gnome 
who performs a  small  unitary  transformation in between 
each gate. Hence, the calculation which we actually per- 
form  is 

(33) 

where 6 indicates an operator which is close to U ;  specif- 
ically,  if I & )  = Ul I$o), then I $ 1 )  = E I+o) + €1 I & ) ,  
where €1 is small and  all the  states  are normalized. $, 
indicates the  actual state vector obtained, which  will  hope- 
fully be close to ]$,) , the ideal result. Applying all of the 
6 in series, and collecting terms, we find 

I-) 

(34) 

The worst possible situation would occur if all the terms 
on the right hand side were to add in phase. This would 
yield 

1.') - I+,) = (En + en-1 + e - -  + €1) (35) 

where IE) = IE,) = U, = ... = Un...U2(e1) IEl). 
Let us assume that  the maximum error occurring with each 
gate is E; then 

- " 

One concludes therefore that  the errors grow linearly 
with respect to  the number of gates applied. Even without 
error correction, the required precision of a quantum com- 
puter would  grow only linearly with the number of gates. 
(Note that  the number of bits of precision therefore grows 
only logarithmically). This level  of precision is acceptable 
in  a "reasonable"  model of computation. 

Having thus addressed the issue of precision (and uni- 
tary gate errors), we  now address errors in general. There 
are two types of errors which can occur during a quantum 
computation: bit flips  (Le. 10) - 11) and 11) -+ IO)) and 

23The particular  argument given here is similar to  that in Preskill 
[83] and in Kitaev [61]. 

phase flips ( 10) - 10) but 11) - - 11)). Smaller errors 
(e.g., 10) - 10) - ~ I I ) )  are merely superpositions 
of the error-free state and  a small amount of one (or both) 
of these  error  states. On the surface, it would  seem to be 
impossible to correct for such errors  during a quantum com- 
putation. Classical error correcting codes are based upon 
the idea of redundant information and frequent measure- 
ment (e.g., store the bit 1 as three  bits 111; as long as only 
a single bit error is committed, one can correct for it).  But 
one is unable to make duplicate copies of quantum infor- 
mation (the "no-cloning" theorem),  and moreover, one is 
unable to detect errors by  looking at the  state of the com- 
puter  during the course of the computation, because doing 
so would  necessarily cause a L'collapse'l of the wavefunc- 
tion. Nevertheless, Peter Shor demonstrated [29]  [28] that 
it is possible to perform quantum  error correction, and  a 
large literature has developed on  this topic (e.g.,  [91]  [82]). 

I will not discuss quantum  error correcting codes in de- 
tail here; however, it is important to know of their existence 
and to understand the fundamental principles upon which 
they  are based. The key concept on which all  quantum 
codes depend is that errors  are assumed to be uncorrelated 
and local. Uncorrelated implies that  the errors are in some 
sense random: it is  always  possible, even with classical er- 
ror correction, for a little gnome who  knows your scheme 
to create  errors in your calculation by committing just  the 
right errors in the right places. Local implies that  the er- 
rors act on only one qubit (or a few qubits) at a time. 
This is  physically reasonable. It is  likely that, during the 
course of a calculation, random  atoms may spontaneously 
emit photons. It is not likely that all the atoms in your 
system will spontaneously emit photons at the same time. 
Given these assumptions, and as long as the frequency of 
errors is below a certain  threshold, it is  possible to perform 
arbitrarily long fault-tolerant quantum  computations [82]. 

This concludes our discussion of the mathematical for- 
malism  used in quantum  computation.  In  addition to pro- 
viding the necessary background for the rest of the the- 
sis, the author hopes to have made a convincing case that 
quantum computation is in fact a physically reasonable 
paradigm that poses a very real challenge to  the strong 
form of the Church-Turing thesis. Indeed,  it  appears most 
likely that  the strong form of the Church-Turing thesis is 
wrong. 

G. Potential implementations 

Although this document focuses on quantum algorithms, 
it would not be complete without at least some  discussion 
of the possible hardware with which a  quantum computer 
might be implemented. There is at this  time a wide variety 
of suggestions for quantum computing devices;  below, I will 
address a few  of the more promising proposals. 

Trapped Ions. First suggested by Cirac  and Zoller[31], 
this scheme uses  ions in a linear Paul trap  to store  quantum 
bits. The ground state of an ion is labeled 10) and the 11) 
state is a metastable excited state.  With a properly timed 
laser pulse that is tuned to  the energy difference, one can 
effect any desired  single qubit  unitary  transformation. One 



can measure the  state of a qubit with a laser that drives the 
(0) state  to a short-lived excited state I f ) ,  and looking to see 
if the ion  fluoresces. Multiple ions in the  trap  are physically 
separated because of their coulomb interaction and can  be 
addressed individually. The difficult part of this scheme 
(like most proposed quantum computer implementations) 
is with the two qubit gates. In this case, the trick is to 
excite a normal vibrational mode of all the ions  in the  trap 
when a particular ion absorbs a photon. Another laser 
pulse can then  be used to generate a transformation on a 
physically distant  qubit  in such a way that it depends on 
the  state of the first qubit. 

Trapped Atoms. This scheme  was  proposed  by  Pel- 
lizzari et. al. [80]. Instead of using trapped ions, it uses 
neutral  atoms  trapped within an extremely high Q opti- 
cal cavity. The single qubit  operations  are similar to those 
used in the ion trap; however, the two qubit gates are im- 
plemented somewhat differently. In this case, the atoms 
interact with the normal modes of the electromagnetic field 
inside the cavity. The electromagnetic field  is then used as 
the mediator of information between qubits, as opposed to 
the vibrational modes employed in the ion trap. 

Photons. An obvious place to store  quantum informa- 
tion is in the polarization of single photons. Unlike trapped 
ions or  atoms,  it is relatively easy to keep a photon state 
from decohering. The problem is that it is correspondingly 
difficult to get photons to interact with each other. One 
possible technique is to use small cavity QED, as above, 
but use atoms to  cause the photons to interact  with each 
other,  rather than  the other way around. Kimble has pur- 
sued this approach [92] and has been successful in demon- 
strating that it is at least possible to generate substantial 
photon-photon couplings in this manner. 

Nuclear  Spins. A lot of recent attention has been  gen- 
erated by proposals [34]  [53] in which quantum computation 
is performed using  NMR. (The essential idea is the same as 
that suggested by  Lloyd in 1993,  involving arrays of weakly 
coupled quantum systems [67].) R F  pulses are used to con- 
trol  interactions between pairs of nuclear spins; because 
these  spins  are well isolated form their environments, they 
can have very  long coherence times (on the order of sec- 
onds). The current NMR quantum computing implemen- 
tations differ  from the other schemes because they involve 
an ensemble of quantum computers which  all  perform the 
exact same  computation in parallel; moreover,  since it is 
not possible to initialize the computer in a pure state, var- 
ious techniques are used to create “pseudo-pure states”, 
in  which the slight deviations from an equal distribution 
are exploited so that a computation may  be performed. At 
room temperature, the unfortunate result is an exponential 
loss in signal strength as the number of qubits is increased; 
however, if the system is  cooled so that kBT N AE, then 
one enters a new  regime  which does not have this problem. 
But at such low temperatures,  one can no  longer perform 
liquid NMR, and  without the tumbling of the molecules, 
there  are additional difficulties. It thus  appears that with 
current technologies it will  be  difficult to perform  compu- 
tations  with more than 10 or  12 qubits[96][35], although 

solid  NMR may have the potential for large scale quan- 
tum computing. The current state-of-the-art with liquid 
NMR  is roughly 5 or 6 qubits. However, it is not clear at 
this  time if these experiments are  truly performing quan- 
tum computations  or if they  are  acting  in a purely classical 
regime[26]. 

Semi-conductor  devices. If possible, semi-conductor 
devices  would obviously be a highly desirable platform for 
quantum  computation. Unfortunately, it is hard to main- 
tain coherence in solid state devices: charge dephasing 
times are typically on the order of nanoseconds.  DiVin- 
cenzo and others have proposed using electron spins as 
quantum bits because the spin-coherence times may be  on 
the order of microseconds, which  may be sufficient  [66]  [27]. 
Quantum logic operations are performed by adjusting the 
exchange coupling between spins in single-electron quan- 
tum dots, which  is accomplished by varying electric or 
magnetic fields, or  by adjusting the tunneling barrier. In 
a different scheme, recently proposed by Kane[59], silicon 
is  combined with NMR  in an  attempt to  gain the best of 
both worlds. Quantum information is stored on the nuclear 
spins of impurity ions in doped silicon, and quantum logic 
operations are performed by using gate voltages to con- 
trol electrons which have hyperfine interactions with the 
nuclear spins. 

In conclusion, it is at this stage  quite unclear which  (if 
any) of these proposals will lead to a useful quantum com- 
puter.  What is clear - unfortunately - is that a useful 
quantum computer will not  be easy to build,  and is unlikely 
to exist in the near future. 

. -  

111. QUANTUM  QUANTUM  SIMULATOW 

24Summary. This chapter discusses the possibility of 
using a quantum computer as a quantum simulator. It de- 
scribes a new polynomial time algorithm that uses a quan- 
tum fast Fourier transform to  find eigenvalues and eigen- 
vectors of a Hamiltonian operator,  and  that can be ap- 
plied in cases (commonly found in ab initio physics and 
chemistry problems) for  which all known  classical  algo- 
rithms require exponential time. Fast algorithms for sim- 
ulating many body Fermi systems are also provided: both 
first and second quantized descriptions are considered, and 
the relative computational complexities are determined in 
each case. In  order to accommodate Fermions using a fist 
quantized Hamiltonian,  an efficient quantum algorithm for 
anti-symmetrization is  given. A simulation of the Hubbard 
model  is discussed in detail, as well as a problem  from 
quantum chemistry. I find that classically intractable  and 
interesting problems from atomic physics  could be solved 
with between 50 and 100 quantum bits. 

A .  Introduction 

Since the discovery  by Shor of a quantum algorithm 
for factoring in polynomial time [86], there  has been 
tremendous activity  in  quantum computing. Recent  re- 
sults, some of which  were discussed in the previous chap 

24The work described in this chapter is based upon [I] and 13). 
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ter, include the first experimental demonstrations of  work- 
ing quantum logic gates [75]  [92], quantum error-correcting 
codes[29] [28][91][82], and many novel proposals for the de- 
sign of actual  quantum computers [31]  [67][90][7][77].  De- 
spite  these advances, however, the technical hurdles that 
stand in the way of factoring a large number on a quantum 
computer remain daunting [94] (781 [63].  On the other  hand, 
the problem of simulation - that is, the problem of model- 
ing the full time evolution of an  arbitrary  quantum system 
- is  less technologically demanding. While thousands of 
qubits  and billions of quantum logic operations are needed 
to solve  classically  difficult factoring problems[9], it would 
be possible to use a quantum computer with only a few 
tens of qubits  and  perhaps a few thousand operations to  
perform simulations that would  be  classically intractable. 
A quantum computer of this scale appears to be a more 
realistic possibility. 

Because the size of the Hilbert space grows exponentially 
with the number of particles, a full quantum simulation de- 
mands exponential resources on a classical computer25. A 
system of only 100 spin 1/2 particles, for example, requires 
2loo complex numbers to  merely describe a general spin 
state. It is clear that on a classical computer, a simula- 
tion of this system is in general intractable.  This expo- 
nential explosion severely limits our ability to perform true 
“ab initio” (first principles) calculations; since it is obvi- 
ously not possible to even describe the  state of anything 
but the smallest quantum systems, one must resort to var- 
ious approximation techniques to calculate the properties 
of interest. The idea that a quantum computer might be 
more  efficient than a classical computer at simulating real 
quantum systems was first proposed by  Feynman (long be- 
fore  Shor’s algorithm),  but he speculated that  the problem 
of Fermi statistics might prevent the design of a univer- 
sal quantum simulator [46]. This  chapter will deal explic- 
itly  with the problem of Fermions, in part by describing a 
quantum algorithm for antisymmetrization which executes 
in polynomial time. More  recently,  Lloyd has shown how a 
quantum computer is in fact an efficient quantum simulator 
[68]. In this chapter, I shall provide the first detailed algo- 
rithms for a quantum Simulation,  using the Hubbard model 
in both first and second quantized formalisms.  To empha- 
size the algorithmic aspect of this work, many subroutines 
executed by the  quantum computer will be described with 
pseudo-code instructions as well as with words. 

Other recent work in  quantum computation has revealed 
various techniques for simulating physics on a quantum 
computer [68] [l] [23]  [lo21  [99]  [64].  However,  while other 
work has described a variety of algorithms for time evolv- 
ing a quantum state [68][1][23] [102][99], there has been 

25At  least, it is believed to  require  exponential resources. If a 
method were found to  perform classical simulations of quantum me- 
chanics without an exponential overhead, than all quantum algo- 
rithms could be reduced t o  classical algorithms - implying, among 
other things, a polynomial time classical factoring algorithm. In this 
sense, the problem of performing a quantum simulation is at least as 
hard as any problem in BQP. (However, because of a mathematical 
technicality, which there is no space to discuss here, it  cannot  be 
called BQP complete). 

comparatively little work done on algorithms which cal- 
culate  static  properties of a physical system [64]  [102]. In 
particular, of all the questions which one might ask about 
a quantum system, there is one most frequently asked and 
for  which one would  most greatly desire an efficient alge 
rithm:  What  are the energy eigenvalues and eigenstates? 
This  chapter will  provide a quantum algorithm that can 
find  eigenvalues and eigenvectors of a Hamiltonian opera- 
tor in cases that occur frequently in problems of physical 
interest. Moreover, the algorithm requires an amount of 
time which scales as a polynomial function of the number 
of particles and the desired accuracy, whereas all classical 
algorithms (with known complexity26) require an exponen- 
tial  amount of time. 

Hence, this  chapter provides for the first time a com- 
plete  and detailed quantum algorithm for simulating and 
calculating the properties of a system of physical interest, 
and describes also the first and only other known, well- 
defined algorithm, other than  the Shor algorithm and cer- 
tain artificial problems constructed explicitly for this pur- 
pose [21][88], that is thought t o  gain an exponential speed 
increase by exploiting quantum  computation.  This  chapter 
also attempts  to make a careful estimate of the quantum 
resources that are required to solve a classically intractable 
problem, and finds that only 50-100 qubits  are necessary. 
This  estimate is more than  an order of magnitude smaller 
than previous estimates of the qubits required to factor 
“interesting” numbers.27 

B. The  fermion problem and the Hubbanl model 
This section will discuss how one performs a quantum 

simulation of a many-body Fermi system, using the Hub- 
bard model as a concrete example. The algorithm used to 
perform the simulation could be implemented on a variety 
of possible hardware schemes: the actual implementation 
of the quantum computer is not relevant, as long as it sup- 
ports universal quantum  computation[6] [39] 1431 [69]. (How- 
ever, different  physical implementations may of course be 
better or worse suited for different problems). 

B.l Description of the system 

The problem considered here consists of n particles, each 
of which can be in  any of m single particle states, labeled 
1. .m. These states might be sites in a lattice, or atomic 
orbitals,  or plane waves, etc. The mapping of the model 
system  onto the  qubits of the computer depends on whether 
we choose a first or second quantized description. In many 
respects, the second quantized form appears  naturally well- 
suited for quantum  computation of Fermi systems: the oc- 
cupation of each state must be  either 0 or 1, which maps 
directly to the  state of a qubit.  In  this case, the memory 
needed to map the  state of the entire n particle system is 

261t is possible that some Quantum Monte  Carlo methods may 
scale polynomially for certain  problems, but  the scaling is  not known. 
Moreover, these  techniques  typically have additional difficulties with 
Fermi  systems and  with excited energy  eigenstates. 

27Because of the obvious difficulties in constructing a quantum com- 
puter  and maintaining coherence, it is important to  look  for problems 
which require as few qubits as possible. 
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m qubits (independent of  TI).,^ To treat a first quantized 
Hamiltonian, one may imagine a quantum word, or qu- 
word, as a string of qubits of length log, m; one qu-word 
represents any integer in the range l..m, and, consequently, 
the  state of one particle. The  state of the entire physi- 
cal system being simulated can therefore be represented 
by n qu-words,  or n log2 m bits. If the number of parti- 
cles  is  much smaller than  the number of possible states, a 
first quantized representation may be vastly more efficient 
(nlog, m qubits vs. m qubits). In  either  representation, if 
the simulated physical system is in a superposition of many 
direct product states (as it is in general), then  the quan- 
tum computer will be in a corresponding superposition of 
states in order to represent the correct physical state of the 
simulated system. 

B.2  Fermions in the second quantized formalism 
The problem of Fermions is handled more easily in the 

second quantized form because the statistics are incorpo- 
rated  into the raising and lowering operators. As usual, 
the calculation begins with all qubits  in  the 10) state. One 
can prepare the system in any state as long as it can be 
reached from the zero state using a relatively small num- 
ber of quantum logic operations (that is, polynomial in m). 
Examples of such states include those  in which the n par- 
ticles are localized in individual lattices sites, momentum 
eigenstates, thermal states of non-interacting particles, and 
states in which particles obey k-particle correlations or en- 
tanglements (for small k ) .  Thus Fermi statistics do not 
pose any additional complications for system preparation 
in the second quantized formalism. Because the statistics 
are incorporated into  the raising and lowering operators, 
the additional complications occur during time-evolution. 

In  the Hubbard model, electrons move about a lattice of 
sites. Each site may be empty  or occupied by a spin up 
electron, a spin down electron, or two electrons of opposite 
spin. Two qubits  are therefore required to represent the 
four  possible states of each site. The Hamiltonian for the 
system is 

m 

(37) 
i=l < i , j>u  

In  the first term, which corresponds to potential energy, VO 
is the strength of the potential,  and ni, is the operator for 
the number of Fermions of spin 0 at site i. In the second 
term, which corresponds to kinetic energy, the  sum < i ,  j > 
indicates all neighboring pairs of sites, t o  is the  strength of 
the “hopping”, and c:,, and cjbare operators for creation 
and annihilation, respectively, of a Fermion at site i and 
with spin 0. The computer simulates the Hubbard model 
by performing the  unitary  operation U = e-*Ht on suit- 
ably encoded states.  This can be accomplished most easily 
by splitting the Hamiltonian into a sum of local terms H j  
and repeatedly applying the operators Uj = e-7; 3 n ,  to 

28For Bose particles, where the occupation  number of each state  can 
be any integer in  the  range O..n, log n qubits  are needed to represent 
each state, yielding a total of rn log n qubits. 

‘ H . L  

evolve local parts of the system over small time slices i, 
in  series.  (See  Ref. [68] for further discussion of this tech- 
nique; it will  also  be described in more detail below). Thus 
it suffices to describe algorithms which perform the time- 
evolution corresponding to each local term in the Hamil- 
tonian. To effect the time evolution corresponding to  the 
potential energy terms Vonipil, the following sim- 
ple algorithm will  suffice: consider each site one at a time; 
for  each site, if it is occupied by  two electrons (of oppo- 
site  spin), advance the phase of the entire state by -fVo$. 
This  subroutine requires O(m)  operations. It is often con- 
venient to describe a quantum algorithm in terms analo- 
gous to  the pseudo codes used to describe classical  algo- 
rithms; the previous algorithm  then  appears as follows: 

loop i over sites 
i f   s i t e  i is occupied by two e lectrons,  

set f lag   qubi t  
use   cont ro l led   ro ta t ion   to  advance  phase 

of flagged components 
undo i f   ( to   res tore   the   f lag   qubi t )  

To calculate the effect of the hopping terms x<i,j>u toclucju 
requires a slightly more complicated algorithm: first, loop 
over  all pairs of (physically) neighboring sites i and j ,  and 
consider hopping between each pair of sites separately. For 
each pair i, j ,  count the number of occupied states which 
fall  between i and j when the system is written  in second 
quantized form. A flag is set to  the parity of this number, 
which indicates whether or not a change of sign is intro- 
duced when hopping between the two sites. It is now easy 
to perform the time evolution Vi because the action of the 
operator  takes place in the two qubit space i ,  j ;  a simple 
two qubit  unitary  operation is performed that diagonalizes 
the Hamiltonian in this space (depending upon the flag), 
and  the phases of the eigenstates  are  then advanced by 
the  appropriate amount. In pseudo code, the algorithm 
appears as follows: 

loop i over   s ta tes  
loop j over  neighbors  with i > j 

count s t a t e s  occupied between i and j 
l e t   f l a g   q u b i t  = pa r i ty  of t h i s  number 
diagonalize  bits  i , j  according t o   p a r i t y  

b i t  
advance  phase 

undo diagonalize 
undo counting and restore   f lag  qubi t  

Assuming that  the number of neighbors is a constant, the 
loops execute O(m)  times. It takes no more than O(m) op- 
erations to count the occupancy of the intervening states, 
and it follows that  the  entire algorithm for simulating the 
second quantized Hubbard model executes in O(m2) quan- 
tum logic operations. 

B.3 Fermions in the first quantized formalism 

Fermi statistics  are more difficult to handle in the usual 
first quantized description, because it is  necessary to ini- 
tialize the quantum  computer  into  an antisymmetrized su- 
perposition of states corresponding directly to  the actual 
physical state of the system. As there  are n! states in the 
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superposition, one needs a fast quantum algorithm for  gen- 
erating  this superposition state in order for the approach 
to be tractable. 

The algorithm described below accepts as input  a  string 
of n qu-words (representing the  state of the physical system 
being modeled) and generates an antisymmetrized super- 
position of n! states in O(n2) time2'.  Note that without 
further restriction, antisymmetrization is an irreversible 
process and cannot be performed by a reversible quantum 
computer: there  are n! input states which correspond to 
the same antisymmetrized state (modulo an overall phase). 
One must therefore add  the  additional requirement that 
the  input  state is ordered. The correspondence between an 
ordered n-tuple of qu-words and  an antisymmetrized su- 
perposition is one to one. In fact,  this observation is in 
some sense the key to  the algorithm. 

System preparation  in the first quantized formalism 
therefore begins by first initalizing the computer into an 
unsymmetrized state  and then antisymmetrizing that  state. 
Placing the system in any (unsymmetrized) direct product 
state is easy: simply place each particle in the appropri- 
ate single particle state. These single particle states might 
include, for example, those which are localized in posi- 
tion space, momentum space (obtained by using a quan- 
tum  FFT),  and thermal  states. The system could  also be 
initialized into  states with arbitrary k-particle correlations 
or entanglements by performing quantum logic operations 
in the appropriate k-particle space, requiring only O(m2k) 
operations in the general case, and often far  fewer. 

Antisymmetrization is accomplished in four main steps, 
summarized below: 

Step I. Initialization of the  input  state. Imagine that 
there is a  string of qubits which are all initially set to zero, 
and define three registers A,  B,  and C,  each consisting of 
n qu-words (nlogm qubits). The qubits in register A are 
initialized to  the ordered string of qu-words  which represent 
the input state of the system . The algorithm is unaffected 
if this  state is a superposition of several ordered n-tuples. 

Step 11. Generating n! states. We begin by creating the 
following superposition of states in register B: 

(38) 

This is  accomplished with O(n(logm)2) steps: by  perform- 
ing appropriate  rotations on each qubit, one at a time, the 
computer is  placed in a superposition of n! unique states. 
For example, the sum -&(IO) + 11) + ... + IS) + 17)) is easily 
generated by rotating  three  qubits from the  state (0) into 

a similar manner, one qubit at  a  time, by using controlled 
rotations that are conditioned on previous qubits. 

Step 111. Transform into  permutations of natural num- 
bers. The goal of this  third  step is to transform the su- 
perposition of states in register B into the superposition 

permutations on n objects.  This is an equal superposition 
of the  states representing all the permutations of the first n 
natural numbers. The basic idea is as follows: let B[i] indi- 
cate the ith qu-word in register B; map B[i] into  a qu-word 
B'[i] by setting B'[i] equal to  the B[2Ith natural number 
less than n which does not occur in B'[1] ... B'[i - 11. For 
example, the  state 11111) maps into the  state 11234) ; the 
state 13321) maps to  the  state 13421) . This  transformation 
is  accomplished as follows: 

- 1 CUES, lc(l..n)), where Sn is the symmetric group of 

loop i over qu-words 2. .n 
Sort  B[1] . . . Bc i -11  

{Note: t h i s  will generate work b i t s   f o r  
r e v e r s i b i l i t y }  

loop j from 1 t o  i-1 

end  loop j 
Undo Sort  {this will a lso   c leanup  the  work bits} 

i f  BCjI <=B [il then  increment B [i] 

end loop i 

The algorithm described above requires only O(n2) oper- 
ations  (up to polylogarithmic factors). To prepare for the 
last phase of the algorithm the n-tuple 1,2,3 ... n is then 
assigned to register C ,  leaving the computer in the  state: 

Step IV. Sorting and unsorting. The algorithm pro- 
ceeds with a series of sorting  and  unsorting operations. As 
in Step 111, a  string of  work qubits is required so that  the 
sorting operations are reversible.  Any sorting algorithm 
can be used;  however, a heap sort is recommended, be- 
cause it requires O(n log n) operations  in all  cases and only 
n logn scratch q ~ b i t s . ~ '  The first sort  orders register B 
with a series of exchanges and scrambles A  and C with the 
same series of exchanges. The resulting state is 

- I.(Q)) I1.n) la(l..n)) lsmutch) 
1 
n! 

U E  s, 

At this  point, one has already obtained  a symmetrized su- 
perposition of the  input  states,  but  it is entangled with 
many other  qubits. One can antisymmetrize simply by 
counting the number of exchanges made  during the sorting 
operation  and advancing the phase of that component of 

the  state (IO) + 11)). States of the form & ti) for 30Note that in a quantum algorithm  such as the  one described here, 
values of that are not  powers of two can be generated in the complexity of the sorting is the worst-case complexity, because 

one  cannot look at the  state of the  quantum  computer  to determine if 
the  sorting  has been completed, and because there  are undoubtedly 

29The complexities in this section are often specified only up t o  some elements in the superposition which will take  the worst-case 
a poly-logarithmic factor. For example, the entire  algorithm is more  time. Thus a Quicksort, which requires O(n1ogn)  operations on 
accurately described as O(n2(logm)2). average, would require O(n2) operations in the  quantum implemen- 

tation. 
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the superposition by T (i.e.,  flip the sign) if this number 
is odd. (If one wishes to obtain a symmetrized state for a 
simulation of Bose particles, one can simply leave the  state 
as it is and proceed). The algorithm continues by  revers- 
ing the  sort on register B, but leaving registers A and C 
unchanged. The  qubits contained in B and C are then re- 
dundant: in each component of the superposition, if B[i] = 
n,  then  C[n] = i. This redundancy allows B to be set to zero 
reversibly.  By then sorting A and C together, eliminating 
C,  and unsorting, one obtains the desired antisymmetrized 
state. Note that in the final unsorting operation, the al- 
gorithm relies upon the fact that  the ordering of the  input 
state !\E) was.stipulated to be the same as the ordering of 
the integers l..n in register C (so that antisymmetrization 
would be reversible); if this were not the case, the algc- 
rithm would  fail. The entire process  is completed in O(n2) 
operations. 

Because the  input  state is now fully antisymmetrized, 
time evolution is in principle straightforward. Using the 
same technique as before, the Hamiltonian is split  into a 
sum of terms Hj and the corresponding time evolution o p  
erators Uj = e-K J n are applied to  the state in series. 
(The  antisymmetry of the  state will not be  effected  by 
time  step  errors that occur during this process; although 
each individual Uj does not preserve antisymmetry, their 
products  do exactly.) Each Uj can be performed by an a p  
propriate series of quantum logic operations; the actual 
sequence of gates required can be determined by inverting 
the Campbell-Baker-Hausdorff formula. Using this proce- 
dure, O(m2) steps  are required to perform an  arbitrary one 
particle operator Uj,  and O(m4) operations  are required to  
perform an  arbitrary two particle operator. It is there- 
fore possible to simulate in polynomial time any system 
of Fermions using the first quantized description. For the 
special case of the Hubbard model, the simplicity of the 
Hamiltonian allows one to do better. I describe below  how 
to perform each Uj in only O((1og v ~ ) ~ )  steps. To begin, 
consider the Hubbard model Hamiltonian in its first quan- 
tized form: 

i H . l  

where (ic~(T(jc~) = to6<i,j> , and (i T,i I (V(i T,i 1) = Vo 
are the only nonzero matrix elements of V. As before, the 
potential energy terms  are easier because they  are diagonal. 
For a given pair of particles, simply determine if they  are 
at the same  site and perform a controlled rotation if they 
are. In code: 

loop i, j over p a i r s  of p a r t i c l e s  
i f  i, j a re  at same s i t e   s e t   f l a g   q u b i t  

use con t ro l l ed   ro t a t ion   t o  advance  phase 
of f lagged components 

undo i f   ( t o   r e s to re   t he   f l ag   qub i t )  
In  order to perform the time evolution corresponding to 

the kinetic energy terms, we focus on one particle at a time. 
For  each particle, the idea is to decompose the kinetic en- 
ergy terms  into a sum of block diagonal matrices and  then 

diagonalize the sub-blocks in each matrix in ~arallel.~’ For 
simplicity of explanation, consider a 1-d Hubbard model 
and ignore spin. The general case  is a straightforward ex- 
tension. In the 1-d spinless case the kinetic energy part of 
the Hamiltonian can be  written 

T h(1, 2) + h(2,3) + h(3,4) + ... + h ( v ~  - 1, m) (42) 

where h(i, j )  is the piece of the Hamiltonian that corre- 
sponds to hopping between sites i and j :  all matrix ele- 
ments of h( i , j )  are zero except (iIh(i,j)lj) = (j lh(i , j) l i)  = 
to .  One  can rewrite the previous expression as follows: 

T = TI + T2 (43) 
TI = h(l,2) + h(3,4) + h(5,6) + .._ (44) 
T2 = h(2,3) + h(4,5) + h(6,7) + .... (45) 

The operators TI and T2 are in  block diagonal form.  To 
fully diagonalize each matrix  (separately), perform quan- 
tum logic operations on each state to transform the state 
number into two quantum numbers labeling the block and 
the location within the block (0 or 1). For example, to diag- 
onalize T I ,  map  the  state In) into I(n + 1) div 2, nmod 2) 
(where x div 2 indicates the greatest integer less than or 
equal to x/2). Because TI is  block diagonal and only  mixes 
states within each  block - and because all states within the 
same block  have their first quantum number in common 
- the action of 2’1 takes place entirely within the space of 
the second quantum number. In this one qubit space it is 

simply the  matrix t o  ( ). Thus  all the blocks can 

be diagonalized in parallel by diagonalizing this  trivial 2x2 
matrix  in the one qubit  space of the second quantum num- 
ber. Each state in the superposition is then advanced by 
the appropriate phase, and all the previous steps  are re- 
versed. The algorithm requires only O( (log v ~ ) ~ )  quantum 
logic operations. 

B.4 Reading the final state 
Having thus described how to prepare a quantum com- 

puter in a state  that is analogous to  the initial state of a 
many body Fermi system - and how it can be programmed 
to simulate that system’s time evolution - one must now 
consider what information can be extracted from a quan- 
tum many-body simulation. It is obviously impossible to 
obtain the entire wavefunction (no classical memory  could 
hold it).  Rather,  the “answer77 is obtained by performing a 
series of measurements on the qubits, one at a time. Each 
such measurement will  yield either a 10) or a 11). It is thus 
possible to measure any physical property of the wavefunc- 
tion that can be expressed in terms of such local variables. 
To obtain useful information about the physics of the sim- 
ulated system, one must initialize the quantum computer, 
simulate time-evolution, make a measurement, and  then 
repeat this process a sufficient number of times to acquire 
a statistically significant result. 

31Because one often encounters near-diagonal operators  in various 
problems, this technique may likely be useful in other circumstances 
besides simulations. 



19 

* '  
One important example is the electronic charge density 

distribution. In the second quantized representation, one 
performs measurements at each site to determine the prob- 
ability of occupancy. The number of such measurements 
required to obtain some desired accuracy E varies as 
(Le., the accuracy grows as a polynomial function of the 
number of trials).  In  the first quantized representation, 
the same result is obtained by measuring the location of a 
given particle and  generating a histogram of locations from 
repeated trails. 

It is  possible to obtain two-particle correlation functions 
and even  Ic-particle correlations using a similar approach 
(requiring roughly O ( E - ~ ~ ~ )  trials, where 6 is the density of 
points in the histogram and E is the desired accuracy). The 
momentum distribution function can be obtained by  per- 
forming a quantum FFT before sampling the wavefunction. 
From the one and two particle densities and the momen- 
tum distribution, it is possible to calculate the expected 
energy of the wavefunction. 

A variety of other techniques might be used to obtain 
other  types of information: for example, one could obtain 
scattering amplitudes by simulating the motion of an elec- 
tron  through a charged medium and measuring the prob- 
ability of its emerging with different momenta. Or, one 
might perform a quantum simulated annealing by time- 
evolving the system in contact with a simulated heat  bath. 
By then employing the previous techniques one could ob- 
tain information about the system's ground state. 

C. Finding eigenvalues and eigenvectors 
Although the techniques described in the previous sec- 

tion allow one to initalize a simulation in a variety of physi- 
cally interesting states,  time evolve that system, and make 
measurements to learn the relevant  physical information 
about the final state, it is not clear how one can determine 
the properties that are often of most interest: eigenvalues 
and eigenvectors. This section provides an algorithm for 
finding this information. 

C.l Statement of the problem 
The problem to be solved  will  be  formalized as follows. 

Consider the time-evolution opera_tor f i  = which 
corresponds to the-Hamiltonian H,-and an approximate 
eigenvector V, of U (and thus of H )  that can be gener- 
ated in quantum polynomial time; Le., the machine can be 
placed into a state corresponding to V, using a polynomial 
number of quantum logic operations. 'Call the  true eigen- 
vector V and the  true eigenvalue X,. If the  state Vu satis- 
fies the property that I(VulV) l 2  is not exponentially small - 
that is, the approximate eigenvector contains a component 
of the actual eigenvector that is bounded by a polynomial 
function of the problem size - then V and X, can be found 
in time proportional to 1/ I(ValV)12 and 1 / ~ ,  where E is the 
desired  accuracy. 

Intuitively, what the algorithm does is to resolve the 
guess into  its non-negligible components ancdetermine  the 
corresponding eigenvalues. If the operator U (and thus its 
eigenvectors)  is of exponentially large dimension - which 

it typically is - there  are no known  classical algorithms 
that can find  even the eigenvalues  in polynomial time. Al- 
though the requirement that there exist an initial state 
vector V, with the specified properties may appear to be 
overly restrictive, it is frequently (if not usually) possible 
to obtain such a guess  for  "real" problems using existing 
classical techniques. For example, in any physical system 
with discrete energy  levels that are  not exponentially close 
together near the ground state (such as an  atom), if it is 
possible to obtain classically any state vector with expected 
energy merely less than  the first excited state (by a non- 
exponentially small amount),  then  this  state vector must 
contain a non-negligible component of the ground state and 
- although it may not remotely resemble the ground state 
- could be used as the approximate state V, to determine 
the  true ground state  and ground state energy in polyno- 
mial time. In fact, for a system with discrete energy  levels, 
almost any physically reasonable initial state is likely to 
contain non-negligible components of all nearby eigenvec- 
tors (which this algorithm would therefore find). Finally, if 
for some problems it is not possible to obtain classically an 
approximate state with the desired properties, it may of- 
ten be the case that  the  state vector V, may be generated 
using a quantum algorithm, such as quantum simulated 
annealing. 

(2.2 Eigenvalues and eigenvectors via  quantum FFT 
The core of the quantum algorithm is a subroutine which 

applies to any U that can be implemented in  quantum poly- 
nomial time.  (It was  shown in [68] that  the time evolution 
operator corresponding to any local Hamiltonian can be 
implemented in polynomial time on a quantum computer.) 
(As an example, the Hubbard model, as discussed in the 
previous section, would be one possible f i  for  which the 
necessary quantum logic gates  are known  in detail). A 
similar subroutine was previously (though independently) 
described by  Cleve et. al. in [37] to find the eigenvalues 
of unitary operators. Cleve et. al. show how one can ob- 
tain an eigenvalue with exponential  precision if one is  ini- 
ti;tlk given  the-eigenvector and devices that can perform 
U ,U2,U4, ... ,U2"; they use this  subroutine in a modified 
version of Shor's algorithm by randomly sampling from the 
eigenspectrum. Of course, we have no way to generate fi2"', 
nor do we seek random eigenvalues or exponential precision 
(polynomial accuracy will  suffice).  However, we employ  es- 
sentially the same subroutine  in an algorithm that takes an 
estimate of an eigenvector  (e.g., the ground state)  and uses 
it  to find the eigenstate itself. (In its original form, this 
routine is not useful  for finding eigenvectors: in a Hilbert 
space of exponential dimension the chances of getting the 
same eigenvector  twice are exponentially tiny. The situa- 
tion is similar to Shor's use of the quantum Fourier trans- 
form: the quantum Fourier transform, developed by  Cop- 
persmith[33], does not in and of  itself supply  an exponential 
speed up over  classical computation. It is only when  used 
as a subroutine in a quantum algorithm for factoring that 
it allows an exponential speed up over all known  classical 
algorithms). 



The algorithm will  proceed as follows: Consider a quan- 
tum computer consisting of m+l+w qubits, where a total of 
m qubits  (to be called the index bits)  are used for an FFT, 
a total of I qubits describe the Hilbert space in which the 
operator 6 acts,  and w extra working qubits  are required 
for temporary storage. Let M = 2m. The accuracy of the 
result will  grow as 1/M - therefore, the required number 
of qubits will  scale as the log of the accuracy. Assume that 
the  m index qubits  are initially in the  state 10) and that  the 
1 qubits  are initially in the  state Va; i.e., the initial state is 

19 >= 10 > ]Vu > (46) 

where the w work qubits  are assumed to be (0)  unless  spec- 
ified otherwise. Perform a 7r/2 rotation (Walsh-Hadamard 
transform) on  each of the m index qubits to obtain  the 
state 

(47) 

Next, one performs a series of quantum logic operations 
that transform the computer into the  state 

. “I 

This tLansformation  is  accomplished by applying the op- 
eration U to the second set of 1 qubits (which are initially 
in the  state [Vu)) a total of j times. It can be implemented 
easily by performing a loop (indexed by i) from 1 to  M .  
Using standard  quantum logic operations, set a flag qubit 
to  the value 11) if and only if i <j and perform the oper- 
ation 8 conditioned on the value of this flag. Thus only 
those components of the above superposition for  which i<j 
are effected.  Finally, undo the flag qubit  and continue with 
the next iteration. After M iterations, the  state above is 
obtained. 

At this point,  it is  helpful to rewrite the  s tge in a slightly 
different manner. Label the eigenvectors of U by the  states 
\I&) and the corresponding eigenvalues with & .  One can 
then  write 

(49) 
k 

in which  case the  state (48) above can  be  rewritten as 

M-1 

It is now self-evident that a quantum FFT performed 
on the m index qubits will  reveal the phases W k  and 
thereby the eigenvalues x k .  The quantum FFT requires 
only poly(m) operations, whereas the accuracy of the re- 
sult will scale linearly with M = 2m. Each frequency is 
seen to  occur with  amplitude Ck = (Val&); by performing 
a measurement on the m index qubits, one thus  obtains 
each eigenvalue with probability l C & l 2 .  Only a polynomial 
number of trials is therefore required to obtain  any eigen- 
value for  which Ck is not exponentially small. If the initial 
guess IV,) is  close to  the desired state (i.e., I <  VulV > I 2  is 
close to l), then only a few trials may be necessary. 

Moreover,  once a measurement is made and an eigen- 
value X k  is determined, the remaining 1 qubits “collapse7’ 
into the  state of the corresponding eigenvector. One is 
likely to be interested in various properties of the eigenvec- 
tors,  and  these can be determined by making various mea- 
surements on the  state, as described in the previous sec- 
tion. For ab initio quantum calculations, easily obtainable 
properties include those of greatest interest: charge den- 
sity  distributions, correlation functions, momentum distri- 
butions,  etc. Of course, the  state I & )  is still in some sense 
“trapped” inside the computer. But since it is impossible to 
store as classical information the 2l phases associated with 
the  state, one cannot possibly do better. Nevertheless, the 
relevant physical information can be  extracted efficiently 
from the quantum  computer. 

An interesting subtlety occurs if the eigenvalue found 
above is degenerate or nearly degenerate (that is, there  are 
several eigenvalues  which  differ by less than  the accuracy 
l/M). (Note however that nearly degenerate states can 
be resolved  in polynomial time, if desired, as long as they 
are  not exponentially close together.) For degenerate or 
nearly-degenerate eigenvalues, the measurement projects 
the system  into the corresponding subspace. One can then 
determine properties of this subspace - that is, the rele- 
vant physical properties of the system - through  additional 
measurements as described above.  However, one can also 
use this technique to detect the presence of a degeneracy 
by simulating a small perturbation or by varying the initial 
conditions. 

C.3 Applying the algorithm 

Let us now consider more precisely how to use this sub- 
routine to find the eigenvectors and eigenvalues of a “real” 
Hamiltonian. Generally, one wishes to find energy eigen- 
states for a Hamiltonian of the form 

n n 

i=l i> j  

If we write as eiwk and exchange the order of the qubits 
so that  the labels 1 4 k )  appear  first, the result is  seen then 
most clearly: 

where n is the number of particles, Ti is the kinetic energy, 
V ,  is the external  potential,  and V,j is the interaction be- 
tween the particles. (Other  terms can be included, as long 

1 “I as they  act locally). Because the Hamiltonian is Hermitian, 
I*) = - c c k  I$k) eiwkjlj) 

J ; i ? k  j = O  operator U ( t )  = e--iHt, which is unitary  and  has the same 
( 5 2 )  one applie_s the  steps described above to  the time evolution 
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eigenvalues and eigenvectors. This  time evolution operator 
is generated using the same technique as in the previous 
section (see also [68]); the key idea is to write H = CHi 
(where each Hi acts on only k qubits at a time)  and 

A u ( t )  = e - iHt  = ( e - i H * ~ e - i H 2 ~ . . . e - i H k ~ ) m  

+ [Hi, H j ] &  + ... 
i> j 

(54) 

Let Vi = Each term Vi can be implemented effi- 
ciently, because it  acts in a space of only k quantum bits, 
where k is small. For large enough m,  the second term on 
the right (and the higher order terms) approaches zero. It 
is therefore possible to generate 6(t) by acting on the  state 
with each Vi in series, a total of m times. In order to sim- 
ulate 6(t) with an accuracy E ,  one needs to apply O(t2/E) 
quantum logic operations.32 

For a specific problem, the form of the matrices Vi de- 
pends greatly on the basis set chosen to describe the Hilbert 
space. Moreover, the choice may strongly  impact the size of 
the basis required to describe the system accurately. Virtu- 
ally any basis set may be used: position space, momentum 
space, wavelets, single electron solutions for an effective 
potential,  etc. As  long as the single particle basis is of a 
fixed  size, then the operators Vi can always be calculated in 
the chosen  basis and implemented using O(d4) operations, 
where d is the dimension of the single  particle basis set 
[6]. On the other hand,  there is a trade-off  between  mem- 
ory and speed. By using the position or momentum space 
representation, one needs only O(poly(k)) = O(poly(1og d)) 
operations to perform each Vi; however a large number of 
qubits  are required to describe the eigenstates accurately. 
By choosing a more elaborate basis set, one can vastly re- 
duce the required number of qubits,  but a much larger num- 
ber of quantum logic operations O(d4) may be necessary 
to implement each Vi .  (The trade-off described here is 
similar to  the trade-off  between first and second quantized 
representations discussed in the previous section).  Thus 
one finds that,  just as with conventional computations, the 
choice of basis sets in the quantum  computation will  de- 
pend upon the specific problem at hand  and the specific 
capabilities of the actual computing machine. 

Normally, the initial state V, will be the result of a classi- 
cal calculation, for example, a Hartree-Fock calculation or 
configuration interaction calculation. Any ab initio tech- 
nique which results in a known  wave function can be used. 
(Note that this does not include those techniques which uti- 
lize density functional theory, as we require a wavefunction, 

32Since U(t) has the same eigenvalues and vectors for all t ,  this 
might lead one to falsely conclude that  the number of operations nec- 
essary to  find the eigenstates to  a given accuracy could be reduced 
by choosing a shorter  length of time t for the  operator U(t). How- 
ever, the algorithm requires one to calculate U‘, and since U(t)M = 
U(Mt), one sees that U = U(t) must be calculated with  greater preci- 
sion if UM is to  be calculated for a fixed precision. In fact, since the 
eigenvectors are determined with a precision proportional to  M, the 
number of quantum logic operations required to calculate the energy 
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not simply a charge density distribution). If the  input wave 
function is not already symmetrized or antisymmetrized, 
one may use the algorithms described in the previous sec- 
tion to do so efficiently. 

Finally, let us  consider a state-of-the-art ab initio cal- 
culation of atomic energy levels in order to compare the 
quantum algorithm described above with known classical 
techniques. Problems from atomic physics serve as a partic- 
ularly good benchmark because extremely accurate exper- 
imental data is  widely  available. The quantum algorithm 
corresponds most  closely to what is  known as “complete 
active configuration interaction” or “full configuration in- 
teraction” techniques, because the many-particle basis set 
includes all possible products of single particle basis vec- 
tors.  This approach is  most valuable in situations where 
the correlation energy is large and where many “configu- 
rations”  are of similar energy (this typically occurs when 
many electrons are in open shells). Unfortunately, it is 
difficult to state precisely the minimum  size problem for 
which the quantum calculation surpasses the best classical 
calculations, because a variety of sophisticated techniques 
are used to avoid the exponential explosion in basis states. 
That is, the most accurate classical calculations do  not em- 
ploy directly the “full configuration interaction” method. 
Based on [58], however, it  appears that a calculation of the 
energy levels of B (5 electrons), using roughly 20 angular 
wavefunctions and 40 radial wavefunctions per particle - for 
a total of 800 single particle wave functions and therefore 
8005 full many-body basis states - may provide more 
accurate results than any classical calculation performed to 
date. At the very least, such a calculation would reveal sci- 
entifically interesting (and classically unobtainable) results 
with respect to electron correlation energies in B and  the 
relative importance of various orders of excited configura- 
tions. 

A quantum calculation of the B ground state, using a 
basis set as described above, can be accomplished with 60 
qubits: 10 per particle (allowing 1024 states in the single- 
particle basis) to represent the  state of the atom (for a total 
of 50 qubits), 6 or 7 qubits for the  FFT, and a few  addi- 
tional “scratch” q ~ b i t s ~ ~ .  Unfortunately, the two particle 
operators (generated by the coulomb attraction between 
pairs of electrons) take place  in a subspace of dimension 
(210)2; they therefore are represented by matrices with 240 
elements. Implementing such an  operator by brute force  is 
likely to remain intractable for the foreseeable future. How- 
ever, it is possible to perform the necessary transformation 
using a quantum algorithm. One possible technique is to 
change basis sets: by representing the interacting particles 
in position space, instead of with the orbital basis set, it is 

33The  number of qubits required for the FFT is not as large as 
one might at first suppose, based on the earlier statement  that  the 
accuracy scales linearly  with the size of the  FFT. This statement is 
true only for a fixed U. By changing U - in particular, by increasing the 
length of time t in U(t) - one  can obtain  the eigenvalues to  arbitrary 
precision using a ked number of FFT points. However, the number 
of points in the  FFT must be sufficiently large so as to  seperate  the 
freauencies corresuondinn to  distinct eigenvectors. This is how the 

eigenstates to  a precision E is seen to scale as estfmate of 6 or 7-qubits1(64 or 128 FFT points)  is made. 



easy to calculate the coulomb terms (because they are di- 
agonal in this basis). Thus one can transform each particle 
into position space separately (requiring a small number 
of quantum logic Operations), perform the time evolution 
corresponding to  the coulomb interaction,  and  then  trans- 
form back. Unfortunately, a position space representation 
will require many more qubits. A fairly conservative es- 
timate is that 30 qubits per particle (10 per dimension, 
for a real space grid of 1024xl024x1024 per particle) will 
more than suffice.  Because these 30 qubits  are required 
only temporarily for the 2 particles whose interaction we 
are considering at any  particular  stage in the algorithm, 
the new  efficient algorithm requires a total of 2 x 30 qubits 
(for the interacting  particles),  an  additional 3 x 10 qubits 
(for the remaining particles),  and the same 10 qubits for 
the FFT and work space. It thus appears that in order 
to realistically perform an “interesting7’ calculation using 
the algorithms described previously, one will  need a quan- 
tum computer with approximately 100 qubits. Of course, 
the possibility remains that an efficient algorithm for im- 
plementing the coulomb interaction could be invented that 
does not require additional working space. 

D. Conclusion 

In summary, I have explicitly demonstrated how a uni- 
versal quantum computer can be used to efficiently  simu- 
late systems consisting of many Fermions. Depending on 
the particular problem, it may be preferable to employ  sec- 
ond quantized notation (requiring m qubits) or first quan- 
tized notation (requiring nlogm qubits). An O(n2) al- 
gorithm for creating an antisymmetrized superposition of 
states  has been described. This  chapter also provided de- 
tailed algorithms which will simulate the Hubbard model, 
requiring O(n2) quantum logic operations in first quantized 
form, and  O(m2) operations in second. The former  algo- 
rithm employs a scheme for accommodating nearly diago- 
nal Hamiltonians that might be applied to a wider range 
of problems. 

Finally, this  chapter demonstrated a new quantum al- 
gorithm which can be used to find eigenvectors and eigen- 
values of a Hamiltonian operator. The algorithm provides 
an exponential speed increase when compared to  the best 
known classical techniques. Problems from atomic physics 
may be the best place to perform the first real calcula- 
tions, both because accurate experimental data is available 
to verify the resulting calculations, and because the param- 
eters involved appear to be within the foreseeable range of 
small quantum computers. I have estimated that 50 - 100 
qubits would  be  sufficient to perform “interesting” calcu- 
lations that are classically intractable. 

IV. INTEGRALS AND STOCHASTIC PROCESSES 
34Summary. This chapter will discuss quantum algo- 

rithms that calculate numerical integrals and various char- 

34This chapter is based upon work [5] which took place while the 
author was visiting NASA-JPL and  which  will be published sepa- 
rately. 

acteristics of stochastic processes, and describe how one 
may apply either quantum counting or Grover’s mean es- 
timation algorithm to solve these problems. Both of these 
techniques obtain an exponential speed increase in com- 
parison to  the fastest known  classical deterministic algo- 
rithms  and a quadratic speed increase in comparison to 
classical Monte Carlo (probabilistic) methods. I derive a 
simpler and slightly faster version of Grover’s mean algo- 
rithm, show how to apply  quantum counting to  the prob- 
lem, develop  some variations of these algorithms, and show 
how both (apparently  distinct) approaches can be under- 
stood from the same unified  framework. Finally, I’ll discuss 
how the exponential speed increase appears to (but does 
not) violate results obtained  via the method of polynomi- 
als, from which it is  known that a bounded-error quan- 
tum algorithm for computing a total function can be only 
polynomially more efficient than  the fastest deterministic 
classical algorithm. 

A.  Introduction 

Although quantum algorithms have been discovered that 
can solve many problems faster than  the best known  clas- 
sical algorithms, there is a general sense - due, perhaps, 
to the enormous technical challenges that must be over- 
come before a useful quantum  computer  can ever be  built 
- that more applications must be found in order to justify 
attempts  to construct a quantum  computing device. 

In  this chapter I suggest one possible application of a 
quantum  computer, namely, computing the values of inte- 
grals. This problem can be solved in a fairly straightfor- 
ward manner via either  quantum counting[25], or Grover’s 
mean  estimation algorithm[57]. Although these general al- 
gorithms  are  not new, this application may be the most 
useful one described to date. (Because N operations are 
required to retrieve N values from a classical database, 
the mean finding algorithm affords no speed-up when ap- 
plied to a preexisting data set. Indeed, even the original 
database search algorithm has only limited utility, because 
it can  only  be used to search a function space. It is not 
clear to how many real-life problems it could be applied 

I also suggest that a quantum  computer may be used to 
determine various characteristics of stochastic processes. 
Frequently, such  processes are used to generation distribu- 
tion functions, and one wishes to know the mean, variance, 
and higher moments. One can apply  quantum counting 
and mean  estimation to obtain super-classical speedups for 
these problems as well. 

On a quantum  computer, one can find the value of a d- 
dimensional integral in 0 ( 1 / ~ )  operations, where E is the 
desired accuracy. It follows from the results of Nayak and 
Wu [76] that this is in  fact a lower bound. Classically, 
one requires 0 ( l / c 2 )  operations to achieve the same accu- 
racy using probabilistic methods, and requires O(l/&) - 
exponentially more - operations to  achieve the same ac- 
curacy deterministically. (More precisely, it is polynomial 
in the accuracy and exponential in the number of dimen- 
sions.) Since real computers and all classical devices are 

~031) .  
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in fact deterministic, this exponential speed increase is by 
no means a red herring. Indeed, there is a popular miscon- 
ception that real computers can perform probabilistic algo- 
rithms with impunity by  employing pseudo-random num- 
ber generators. Of course, pseudo-random numbers are not 
truly random at all - and one must in fact  be careful about 
treating  them as such. For example, in 1992 Ferrenberg et 
al. found bugs in a supposedly good pseudo-random num- 
ber generator when a numerical simulation of an Ising spin 
system failed due to hidden correlations in the “random” 
numbers[49]. The moral here is that one  cannot rely upon 
a classical computing device to properly execute a proba- 
bilistic algorithm. In some sense, one could argue that  the 
quantum algorithm for evaluating integrals provides an ex- 
ponential speed increase. 

B. Statement of the problem and  classical algorithms 
Without loss of generality, one may consider integrals of 

a real-valued d-dimensional function g(zl,x2, ...zj) defined 
for zi in the range [O, 11 and where g(z1, x2, ... z d )  E [0,1], 
for all d u e s  of x i .  Thus one seeks to calculate 

I = 1’ 1’ ... 1’ 9 ( 5 1 , 2 2 ,  ... Zd)dZldZ2 ... dZd (55) 

In  the discussion that follows, g will be approximated 
with a real-valued  d-dimensional function f ( a 1 ,  a2, ... ad) 
defined  over integral values ai in the range [l, MI and where 

Thus, we wish to find the sum 

, M M  M 

Note that  the sum S is identical to  the average of f over 
all ai. The accuracy with which the sum S approaches the 
integral I is  obviously determined by the density of points 
M in each variable and  the shape of the particular function. 
However35, in what follows, our sole concern will be with 
approximating the sum S. 

A sum of this form can also be used to determine prop 
erties of a stochastic process. A stochastic process may 
be described by a sequence of values, ~ 1 , 2 0 2 ,  ..., W N ,  where 
each  value wi is  chosen randomly from a distribution which 
may depend on  some (or all) wj for j < i. For example, 
a simple random walk  would be described by a sequence 
for  which  each wi is either (wi-1 + 1) or (wi-1 - 1) with 
equal probability. Often, one is interested in a property 
of such a sequence that can be represented as a function 
w(w1, w2, ..., W N ) .  (In many cases, the function w may  de- 
pend only upon the final value w ~ ) .  One wishes to de- 
termine the mean, variance, skewness, and possibly higher 

35Because the computational complexity of the  quantum algorithms 
(and also the classical Monte  Carlo  algorithms, for  that  matter) de- 
pend only logarithmically on M ,  this approximation  is not a limiting 
factor (as long as the function is not pathological). 

moments of the function w over the space of all  possible se- 
quences. This problem is easily transformed into the form 
(55) through a change of variables: write each wi as a func- 
tion wi(ri, ~ 1 , 2 0 2 ,  ..., wi-l) ,  where ri is a random variable 
in the range [0,1]. Then one can write w as a function 
w(rl,r2, ..., T N )  of the independent random variables ri , 
scale the  output so that  it fits within the desired range, 
and  obtain a function in the form g above. The mean 
value of the stochastic process  is then simply the integral 
(55). Once again, the integral is represented as a discrete 
sum. (For some stochastic processes, the problem  may in 
fact be discrete from the beginning). Thus  the problem 
again reduces to finding the sum S in (57). 

One can find higher moments of a stochastic process  by 
simply applying the above approach to a calculation of the 
mean of w2,  w3, etc.  This  method can of course  also be 
applied to calculate moments of any  distribution function 
(even if it is not the result of a stochastic process) as long 
as it can be represented in closed form. 

It should be intuitively obvious that without any knowl- 
edge of the function f ,  one requires classically O ( M d )  oper- 
ations to evaluate the sum. More  precisely, if one views f as 
an oracle (or “black-box”), then one requires at least M d / 2  
queries to determine S to within k f .  (This is  because it is 
possible that  the remaining M d / 2  unqueried function val- 
ues may be  either all 0’s or all l’s, one of which  will  always 
shift the mean by at least f ) .  It follows that  an ordinary 
classical Turing machine requires exponentially many op- 
erations (as a function of d) to determine S with accuracy 
E for any E < a. 

However, if one is  allowed to employ a probabilistic algo- 
rithm,  then one can randomly sample values of the function 
f for various a l ,  a2, ... ad; as long as the values of ai are cho- 
sen randomly (and provided that you are not exceedingly 
unlucky), it is  possible to quickly approximate S to any de- 
sired precision. Indeed, it is a straightforward consequence 
of the central limit theorem that one can determine S with 
accuracy E (with bounded probability) using only 0 ( l / c 2 )  
operations. Note that  the number of trials does not depend 
at all upon the size of the function’s domain - as  it did in 
the deterministic case - but only on the desired  accuracy. 
This is in fact how Monte Carlo integrals are computed, 
and is essentially the only practical way to calculate inte- 
grals of functions with high dimensionality. (It is also  why 
one need not  be concerned with the approximation of the 
integral I with the sum S - one can make M essentially 
as large as one desires, paying only a logarithmic cost in 
computational complexity). Unfortunately, Monte Carlo 
integrals on classical  devices require the use of a pseudo- 
random number generator, and as mentioned previously, 
there is no guarantee that one will obtain “good random 
numbers. One obvious  way to solve this dilemma would 
be to use a simple quantum event to produce a string of 
truly  random  numbers;  but once one introduces quantum 
mechanics into the problem, one can find an even  more 
effective solution. 



1 
24 

C. Review of Grover searching 
Both of the  quantum algorithms discussed  in this chap- 

ter require a generalized version of Grover searching. The 
treatment below  follows that of Grover  [57]; similar ideas 
have also  been described by Brassard et. al. [25] and vari- 
ous others. 

All quantum algorithms consist of unitary  operations a p  
plied in series.  Any sequence of unitary  operations can be 
viewed as a single unitary  operator. Consider a particular 
unitary  operator U which has amplitude Ut, between a 
starting  state Is) and a target  state It). If the computer is 
initially in the  state Is), then  after one application of U 
the computer.wil1 be found in the  state It) with amplitude 
Ut,, and if the  state of the computer is measured in the 
canonical basis, the probability of obtaining the  state It) 
will therefore be IUts12. We seek to amplify the amplitude 
of the  state It). (Increasing the amplitude of this state in- 
creases the chances that it will be found upon measurement 
and thereby allows for fast searching). 

Amplitude amplification in it's simplest form requires 
the inversion operator Iz which inverts the phase of the 
state 1.). We compose the  unitary  operators I and U t o  
form the  unitary operator G in the following  way:. 

G = -IsU-'ItU (58) 

It can be easily  verified that  the operator G leaves invariant 
the subspace spanned by Is) and U " l t ) .  In  particular, one 
finds that 

(59) 

which is approximately a rotation by 2 lUt.,1 radians. It fol- 
lows that by applying 0(1/ IUtsl) iterations, one can  obtain 
the  state U"It) with near certainty. 

The original fast searching algorithm [55]  [56] applies the 
above steps  with U = W ,  where W is the Walsh-Hadamard 
transform - that is, a 1r/2 rotation of each qubit. If the 
initial state Is) = (00 ... 0), then [Utsi = lWtsl = l / f l  
for all possible target  states It). The unitary  operation 
It selectively inverts the phase of the actual  target  state 
It) for  which  we are searching. After one application of 
W, the probability of measuring It) would be only h, the 
same as one would obtain classically  by  guessing.  However, 
it follows immediately from the above that  the amplitude 
It) can be amplified to nearly 1 by applying only O(@) 
operations. 

D. Integrals via  amplitude  amplification 
To evaluate the sum S in  (57), one can use the mean 

estimation algorithm described by Grover in [57]. I pro- 
vide a simpler version of this algorithm (that is also faster, 
because it requires about half as many quantum logic  op- 
erations). The algorithm works  by  refining a series of ap- 
proximations. One can obtain an intuitive  understanding 

of the approach by employing an analogy to classical  coin- 
flipping. Consider a coin, which,  when tossed, comes up 
heads with probability p = S .  By the central limit theo- 
rem, one can determine S with accuracy e using 0(1/ e 2 )  
trials. Let us choose E = 0.1 so that after some (fixed)  num- 
ber of trials N we have determined (with bounded proba- 
bility) the first digit of p .  36 As a concrete example, let 
S = 0.7468332: the first  set of trials would then reveal S to 
be approximately 0.7. Call this first estimate El. Imagine 
now that we are given a second coin,  which,  when tossed, 
comes up heads with  probability p 2  = w. Just as with 
the first coin, tossing the coin 0(1/ e 2 )  times determines 
p 2  with accuracy E .  Choosing the same E and number of tri- 
als N as before, we obtain  (with bounded probability) the 
first digit of p 2 .  But  this is the second digit of S, and  thus 
the current  estimate is now E 2  = 0.74. We then undergo a 
third iteration in which p 3  = - in order to determine 
the  third digit of S. Continued iterations of this process, 
with more and more refined  "coins",  allow one to deter- 
mine S with arbitrary accuracy, each iteration requiring 
the same amount of effort to reveal an  extra digit. More 
precisely, one obtains an accuracy E" using only O(n/  E') 

coin tosses, or, stated differently, an accuracy with logA 
coins and a fixed number of tosses per coin. Of course, this 
classical algorithm would not work in practice, because it 
relies upon being given the requisite series of coins. 

The quantum  algorithm works  in a similar way. The 
final complexity of the algorithm will not  be limited by the 
number of trials, but by the fact that 0(1/ E )  quantum logic 
operations  are required to "generate" the final  coin (that 
reveals pi to accuracy E).  More  specifically, one generates a 
series of probabilities p k  and approximations E k  as follows: 

I shall now describe a quantum algorithm for estimating 
p k  to a given accuracy E .  Define = f - E k - 1 .  Recall 
that 

36Actually, this is not precisely true. If the value of p is very close 
to an integral  mulitple of 0.1, then one does  not have confidence 
regarding the lirst digit, even though one has  accuracy 0.1. Hence the 
estimate used in the second iteration should actually be  the  estimate 
obtained minus one half the error. However, this  detail does  not effect 
the basic principle of the algorithm. 
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M-1 

Consider a  quantum computer with d log, M + 1 qubits. 
Label the  states Ir)lal,a2, ... ad)  where the first qubit T is 
a work qubit  and the remaining qubits  indicate a value 
in the domain of f .  The computer is placed initially in 
the zero state: (0) lOO .... 0 ) .  We begin by applying a Walsh- 
Hadamard  transform to  the function qubits in order to ob- 
tain  an equal superposition of all possible values for the 
ai : 

1 "l 

a al,az, ... ad=O 
191 >= - I O ) b l 7  a27 ---ad)  (67) 

the algorithm requires several iterations. Initially, pk may 
be any value between 0 and 1, and hence N can be at 
most 1. (That is, one cannot use amplitude amplification 
at all). As the estimates E k - 1  become  more accurate,  then 
the value of  Pk becomes correspondingly smaller, and one 
can choose larger and larger N .  

Each estimate pk is determined with a fixed number of 
trials,  and since the estimates become exponentially more 
accurate  with each E k ,  the  total number of trials is  only 
a logarithmic function of the desired accuracy.  Hence, the 
computational complexity is determined by the amplitude 
amplification. Within a polylogarithmic factor, the entire 
cost occurs on the last  iteration (because each iteration 
takes exponentially more time). The computational com- 
plexity of the entire algorithm is therefore the same as the 
amplitude amplification of the last  iteration: 0(1/ E*) op- 
erations  are required, where E* is the desired  accuracy. 

It is interesting to note that, as with the classical  Monte 
Carlo method, the  quantum algorithm depends only upon 
the desired accuracy: the size of the function's domain 
( M ~ )  is irrelevant. 

Next, rotate  the first qubit by an amount E. The  state E- Integrals quantum counting 
is then  There is another algorithm which can be used to evaluate 

the sum S in (57), inspired by the idea of quantum count- 

real-valued function f(a1, u2, ... a d )  into a boolean  valued 

extra parameter q. The parameter  takes on integral values 
in the range [l,Q] where Q is determined by the desired 
accuracy.  Define 

p 2  >= ing [25]. To use this  method, one must first convert the 

A7 al,a2 5' ,... ad=0 (41 - K(a17 a27 *-.ad)210) function. This can be accomplished via the addition of an 

+z(al,a2,  *.*ad)/l) 

transform used in the first step. It is easy to see that 
the amplitude of the  state 11)lOO ... 0) will then be pk 
(because each state Il)lal, a2, ... ad) contributes  amplitude 
1- JMafk(al,a2, ... ad) to  the  state 11)lOO ... 0)). An estimate 
for p k  can therefore be obtained by making measurements 
of the  state of the system in repeated trials,  and counting 
the frequency of the result 11)lOO ... 0). To obtain  an accu- 
racy E requires O(1/c2) measurements. 

However, one can use amplitude amplification to increase 
the accuracy of the estimate. The steps described above 
can be viewed as  a single unitary  operation U that has 
amplitude [Utsl between the  starting  state Is) = l0)lOO ... 0) 
and  the  target  state It) = 11)lOO ... 0). It follows that one can 
use amplitude amplification to increase the probability of 
measuring the  state I l ) l O O  ... 0) .  By performing only O(N) 
operations, one can increase the amplitude of It) to N *pk. 
With  the same 0(l/e2) trials, one thus determines p k  with 
accuracy E* = E/N. By  fixing E and choosing a large N ,  one 
performs only 0 ( 1 / ~ * )  operations to find Pk with accuracy 
E * .  

Of course, there is a limit to  the size of N if  we want the 
amplitude of It) to still be approximately N * Pk. (Alter- 
natively, the size of N is limited by the requirement that 
N * p k  remains a valid probability amplitude).  This is  why 

In other words, for a given a l ,  a2, ... ad,the fraction of the 
Q values  for  which b ( q ,  a2, ... ad, q) = 1 is the best ap- 
proximation to  f(a1, a2, ... ad). It follows that  the average 
value of b is identical to  the average value of f .  How- 
ever, since b is a boolean-valued function, one can estimate 
the average value of b via approximate counting. That 
is, S = (b) = &, where T is the number of solutions 
b(al,a2, ... ad,q) = 1. To count the number of solutions T ,  

recall that during the amplitude amplification process, the 
state of the system rotates within the subspace spanned 
by Is) and U"lt) at a rate which  is proportional to lUtsl. 
Moreover, recall that by using the Walsh-Hadamard trans- 
form  for U (as in the Grover search algorithm), the magni- 
tude of Ut, is exactly lUtsl = lWtsl = l / f i  for any given 
target  state 1 2 ) .  But if the target  state It) = li), then 

the amplitude of lUts/ = T/O. Hence the amplitudes of 
the  states Is) and U-'lt) will oscillate with a frequency 
that varies directly with T .  It is therefore a simple matter 
to create  a superposition 

iEb(i)=l  



c 
26 

and determine the value of T by performing a fast Fourier 
transform on the first register. The accuracy 1/A will  de- 
pend linearly upon the number of points used  in the FFT, 
as will the number of quantum logic operations (because 
it takes 0(1) operations to perform G, one requires O(A) 
operations to create the  state 19 > above). It follows that 
one can determine the value of the integral f to accuracy E 

with 0(1/ E )  operations, as in the previous algorithm. Also 
as above, one finds that  the number of operations does not 
depend upon the size of the domain of f ,  but only upon 
the desired accuracy. 

F. Discussion 

At first, it may appear surprising that these two  very 
different quantum algorithms should both require 0(1/ E )  

operations. However, by exploring some variations of these 
algorithms, one finds that, while not identical, they  are 
both  quite similar. 

First, note that  there is a trivial variation of quantum 
counting, which is simply to measure the  state of the sys- 
tem  in repeated trials,  and count the number of times one 
obtains the  target  state (or more precisely, a state for  which 
b(a1, a2, ... a d ,  q )  = 1.) That is, we determine the fraction 

= (b)  = S through  random sampling. This technique 
is directly analogous to  the way, in Grover mean estima- 
tion, one finds the probability pl through  repeated  trials 
(counting the number of times we measure the target  state 
11)lOO ... 0)). In  both cases, 0(1/  E’) operations would be re- 
quired to obtain an accuracy E .  The difference is that using 
the Grover method, one can subtract  the most recent esti- 
mate from  each term in the sum (to obtain the function%), 
and  then perform amplitude amplification to increase the 
probability of obtaining the  target  state. By amplifylng 
this difference, the precision of the algorithm is limited by 
the linear amplitude amplification process rather  than by 
the quadratic sampling process. In  the case of quantum 
counting, one can also apply the amplitude amplification 
process to  the target state (indeed, this is exactly what the 
quantum counting algorithm does). However, one cannot 
subtract  the most recent estimate from each term in the 
sum: specifically,  for a given a l ,  a2, . . .ad ,  there can be no 
less than zero  values of q for  which b(a1, a2, ... a d ,  q )  = 1. 
In the Grover method, individual terms in the sum may be 
negative, even though the sum of all the terms is always 
positive. The counting method does not allow this pos- 
sibility. It is therefore impossible to use the technique of 
iterated, refined estimates to increase the precision of the 
approximation. 

The relationship can be viewed  from another perspec- 
tive by considering a variation of Grover’s method. As 
presented earlier, the technique depends upon measuring 
the amplitude of the  target  state 11)lOO ... 0). This is accom- 
plished through  repeated measurements. However, one can 
also determine this amplitude with a quantum FFT. Re- 
calling once again that during the amplitude amplification 
process the  state of the system  rotates within the subspace 
spanned by Is) and U”(t), at a rate which  is proportional 
to [Ut, 1 (which in  this case  is equal to p k ) ,  we see that one 

could also use an FFT to determine (and  thereforepk). - 
As in the case of quantum counting, one requires 0(1/ E )  

operations to obtain the result with accuracy E .  Moreover, 
because the FFT measures the frequency of the rotation, 
one does not need to perform the iterated  estimates (which 
previously ensured that  the initial amplitude lUtsl was  suf- 
ficiently small that it would in fact be amplified throughout 
the  entire process). 

The  situation is in many ways similar to  the relationship 
between Shor’s algorithm and Kitaev’s algorithm[61]. In 
the  Kitaev algorithm, one estim_ates the phase of an eigen- 
value 4 of a unitary  operator U . The number of opera- 
tions required to estimate 4 grows polynomially with the 
desired precisioc, bgt  Kjtaev  obtains exponential precision 
by considering U 2 ,  U4, Us,etc. This process is analogous to 
the refined estimates used in the Grover method.  In [37], 
Cleve et. al. describe how to modify Kitaev’s algorithm so 
that it uses an FFT to estimate the phase. The resulting 
algorithm is then identical to Shor’s. 

One sees, therefore, that  the two apparently  distinct al- 
gorithms  are  in fact both very  closely related. In  both 
cases, one performs a sequence of unitary  operations that 
generate an operator  with  amplitude lUtsl to make a tran- 
sition from the 10) state  to  the target  state It), where the 
value of /Ut, I depends directly on the sum S. In  both 
cases, one may use a quantum FFT to estimate the value 
of lUtsl and approximate S with accuracy E in 0(1/ E )  op- 
erations. In both cases, one may estimate the value of [Ut,[ 
directly  through  repeated measurements and  then approx- 
imate S with accuracy E in 0(1/ e 2 )  operations. The only 
difference  is that in Grover’s method, the particular form 
of the  operator U allows one to consider negative values% 
- which in turn allows one to use the process of iterated, 
refined estimates  and  thus to obtain linear precision  di- 
rectly with  repeated measurements instead of with the fast 
Fourier transform. 

G. Conclusion 

In conclusion: I have  proposed  two  new applications for 
quantum computation: evaluating integrals and calculat- 
ing descriptive statistics of stochastic processes. Whereas 
O ( M d )  operations  are required on a classical determinis- 
tic Turing machine, and 0(1/ c 2 )  operations  are required 
with a classical probabilistic algorithm, one can obtain the 
same accuracy on a quantum computer with only 0(1/ E )  

quantum Operations, using  two  different algorithms. I have 
provided a simpler (and slightly more  efficient)  version of 
Grover’s  mean-finding algorithm, demonstrated how quan- 
tum counting can be applied to mean estimation, derived 
some variations of both algorithms, and shown  how the two 
are very closely related. 

It is interesting to consider these results in light of the 
work by Beak  et. al. [8], where it is  proven (using the 
method of polynomials) that a bounded-error quantum al- 
gorithm  for computing a total function can be only polyno- 
mially more efficient than  the fastest deterministic classical 
algorithm. A boolean function b(a1, a2, ... a d ,  q )  such as the 
one described in Section 5 can be described as a sequence 



* of Mdq boolean values; the average of b is a function of 
those Mdq boolean values, and  it is a total function, since 
it is  well-defined  for  all  possible input functions b. In order 
to phrase mean-estimation as a decision problem, we can 
ask: “Is the average value of b within the range [E- E, E+ 
E] ?” (for some chosen E and E ) .  Naively, it  appears that 
the results of  [8] would  imply that  this problem cannot  be 
speed up more than polynomially on a quantum  computer 
(vs. a classical deterministic computer) - whereas I have 
previously claimed an exponential separation. It appears 
that  there is a c~n t rad ic t ion .~~  

The  (in  fact  quite simple) resolution of this problem is 
that  the decision question posed above does not  quite cor- 
respond to mean-estimation. According to  the question 
given, a function with mean just slightly (infinitesimally) 
more than E+ E does not have a mean that is approxi- 
mately E ,  whereas a function that has mean exactly E+ E 

does. Of course, our  quantum algorithms cannot reliably 
differentiate between these two cases in polynomial time 
any better than  the classical deterministic algorithms can. 
The decision question that one can associate with mean- 
estimation would be a probabilistic one; the answer should 
be sometimes yes and sometimes no with a probability that 
depends (perhaps as a gaussian function) upon the distance 
the  true mean is from the estimate E. Such a question is 
not a function  (although  it can be viewed as the average 
value of a weighted ensemble of functions). Thus, the re- 
sults obtained in [8] do not apply to our problem, and  there 
is  no contradiction. 

In concluding therefore the  author would  like to make 
the following point. It is easy for results such as those  in 
[8] to cause one to  be disheartened about the prospects 
of quantum computing. However, sometimes the “real” 
problems we wish to solve  have special properties that can 
make them easier than  the general cases. Calculating ap- 
proximate integrals is one such example - and  there  are 
likely others waiting to be discovered. 

v. NONLINEAR  QUANTUM  MECHANICS AND 
NP-COMPLETE PROBLEMS 

38Summary. This chapter will demonstrate that non- 
linear quantum mechanics  allows  for the polynomial time 
solution of NP-complete and #P problems. If quantum 
states  exhibit small nonlinearities during time evolution, 
then by exploiting nonlinear quantum logic gates  one  can 
design quantum algorithms that solve NP-complete and 
#P oracle problems. Using the Weinberg  model as a sim- 
ple example, the explicit construction of these  gates will 
be derived from the underlying physics. Nonlinear quan- 
tum algorithms are also presented using Polchinski type 
nonlinearities which do not allow  for superluminal commu- 
nication. 

37Actually, this issue applies equally to  the exponential separation 
between the classical deterministic and probabilistic algorithms. 

38The work described  in this  chapter is based upon [4] and (21. 

A .  Introduction 
It has been suggested [97]  [98][50][65] [lo] that under 

some circumstances the superposition principle of quantum 
mechanics  might  be violated - that is, that  the time evo- 
lution of quantum systems might be (slightly) nonlinear. 
While there are reasons to believe that a theory of quan- 
tum gravity may  involve such nonlinear time evolution, 
nonlinear quantum mechanics is at present hypothetical: 
experiments confirm the linearity of quantum mechanics to 
a high degree of accuracy[71][95][30]  [24]. (There  are, how- 
ever, some questions about the interpretation of these tests 
due to  the effects of nonlinear quantum mechanics[81]). 
Nonlinear quantum theories have also had theoretical dif- 
ficulties[79]  [81]  [54] - including problems with superluminal 
communication - but  there  are nonlinear theories that do 
not  appear to have these issues[81] .The validity of nonlinear 
quantum mechanics is an  important question that can only 
be settled by further experiments and the requirements of 
theoretical self-consistency.  However, this chapter is  con- 
cerned not with the validity of a particular nonlinear the- 
ory, but  instead with the implications of nonlinear quantum 
mechanics on the theory of computation, should quantum 
mechanics in fact turn  out  to be nonlinear at some  level. 
In particular, I’ll  show that  it is possible to exploit nonlin- 
ear  time evolution so that  the classes of problems NP and 
#P (including oracle problems) may be solved in polyno- 
mial time. An experimental question - that is, the exact 
linearity of quantum mechanics - could thereby determine 
the answer to what may  have previously appeared to be 
a purely mathematical one. This  chapter therefore estab- 
lishes a new  link  between physical law and  the theoretical 
power  of computing machines, and  demonstrates that  the 
connection is much more subtle than one might suppose. 
Moreover,  because almost all hard  computational problems 
that occur naturally (in computer science,  physics,  engi- 
neering, etc.) are contained within the class of #P oracle 
problems, this result could (someday) be practically impor- 
tant as well. 

As explained in Chapter 1, the class NP is  (loosely  de- 
fined) the  set of problems  for  which it is  possible to ver- 
ify a potential solution in polynomial time. These include 
all problems in the class P (those that can be solved  in 
polynomial time) as well as the NP-complete problems, 
e.g. , traveling salesman, satisfiability, and  subgraph iso- 
morphism, for  which  no  known polynomial time algorithms 
exist. One natural way to approach these problems on a 
quantum computer is to create a superposition of every 
possible potential solution, and then  try  to determine if 
one of those potential solutions is in fact a true solution. 
In some sense, this technique nicely  mimics the theoretical 
behavior of a non-deterministic Turing machine. In order 
to both simplify and generalize the result,  it is convenient 
to replace the actual NP problem with  an oracle problem, 
stated as follows:  consider an oracle (or “black box”) which 
calculates a function that maps n bits  into a single bit; i.e., 
it  takes an  input between 0 and 2n - 1 and  returns either 0 
or 1. One needs to determine if there exists an input value 
x for  which f ( s )  = 1. It is easy to see that a polynomial 



time algorithm to solve this problem can be used to solve 
all problems in the class  NP. (Note, however, that  the con- 
verse  is not necessarily true - the NP complete problems 
contain structure, whereas the function defined  above  is 
completely arbitrary.  Thus this oracle problem is  in fact 
a harder problem than those in NP, because it clearly  re- 
quires exponential time on a classical Turing machine.) For 
simplicity we  will at first restrict ourselves to  the case  where 
there is at most one value x for  which f ( r )  = 1. 

B. First method 
One might attempt to solve this oracle problem on an 

ordinary  quantum computer using the following technique. 
First,  create a superposition of all the input  states: 

. 2“-1 

Next, use the oracle to calculate f ( i )  for each li) in par- 
allel: 

Although the final qubit in some sense “knows” the solution 
to  the problem, a measurement of this qubit will  yield 11) 
with either zero probability if there is  no solution or an 
exponentially small probability if there is a solution. It 
is therefore necessary to enhance the amplitude of the 11) 
component of the superposition by an exponentially large 
factor,  in order to distinguish the two cases. One idea is 
to  try  to increase the number of states with a 11) rather 
than increase the amplitude of the particular state li) for 
which f ( i )  = 1. Imagine comparing the  states li) in pairs, 
according to  the last bit of li). Looking at  just  the last bit 
of li) and the final qubit f ( i ) ,  we see one of the following 
states: 

( a )  100) + 111) 
( b )  101) + 110) (73) 
( 4  100) + 110) 

The last case occurs most frequently. What we’d  like to 
do is map these states  into new states using the following 
transformation: 

( a )  100) + 111) - 101) + 111) 
( b )  101) + 110) - 101) + 111) (74) 
(c)  100) + 110) - 100) + 110) 

This transformation is like an AND gate between branches 
of the wavefunction - it ignores the first qubit  and places 
the second qubit in the  state 11) if and only if either of the 
original components had the  state 11) for the second qubit. 
Performing this  transformation on the superposition of all 
li) will  leave  every state unaffected except the  state which 
neighbors the solution lz). This  state will then pick up 

a 11) in place of the 10) which it originally had. If we 
then compare states in pairs according to  the second bit 
of li), the number of states with a 11) for the final qubit 
will double again. Repeated application of this process 
would then leave the final qubit unentangled with the first 
n qubits: it would be  either in the  pure  state 10) if there 
are no solutions to  the problem, or  the pure state 11) if 
there had existed some state 1.) for  which f ( r )  = 1. A 
measurement of this  qubit  thereby reveals the answer to 
the problem. 

Of course, this  transformation  cannot be accomplished 
using an ordinary  quantum  computer, because it is nonlin- 
ear.  That  this is the case can be easily seen  by the fact that 
in cases (a)  and  (c) the initial states are non-orthogonal, 
but  the final states  are orthogonal. Hence the desired trans- 
formation cannot possibly be linear. One is tempted to  try 
to patch this problem in a variety of  ways. One possi- 
bility is to imbed this transformation  in a larger Hilbert 
space and hope that a projective subspace might reduce to 
the desired nonlinear transformation. Unfortunately, this 
approach cannot succeed. The reason is that different ele- 
ments of the superposition need to interfere with each other 
in later  stages of the algorithm. If the “linearized” ver- 
sion of the transformation results in  extraneous “garbage” 
qubits,  these will prevent the  states from interfering with 
each other  in  future  iterations. Equivalently, one might 
hope that  the non-unitary evolution associated with  the 
measurement process might suffice to  accomplish the nec- 
essary transformation, but  this will fail for the same reason. 
One can also try  to hide the extraneous information in the 
phases of the states. Although this appears promising at 
first, more careful analysis reveals essentially the same dif- 
f i ~ u l t i e s . ~ ~  

One sees, therefore, that  the potential application of a 
nonlinear quantum logic gate arises naturally from a fairly 
straightforward approach to  the N P  oracle problem.  From 
an intuitive perspective, however, it is not exactly clear 
why it is that nonlinearity is important, beyond the fact 
that  the gate which we desire for our algorithm does not 
happen to be linear. One  can get a better feeling  for this 
from a slightly different perspective. 

Consider the  shortest-path version of the traveling sales- 
man problem, and a classical algorithm that finds “pretty 
good” solutions, such as simulated annealing. Implement 
this algorithm on a quantum computer, and initialize the 

** 

390ne can also imagine approaching the problem with  phases from 
the very beginning, thereby avoiding the need for the nonlinear  gate. 
After  calculating  f(i),  multiply the phase of the solution state by -1 
and  then reverse the  computation of f(i). The computer would then 
be in an equal  superposition of all li>, with  the  state Ix>for which 
f(x)=l having  opposite  phase. Pairs of states containing two li>of 
opposite phase  are orthogonal to  those for which both  li>are of the 
same phase, so it is possible t o  reverse the phase of the pair,  thereby 
transfering the minus sign from the solution Jx>to  its  partner  state. 
Repeating  the process which created  the  phase in the first place would 
then leave two states with negative phase. By iterating  through each 
bit of li>(as  in the previous algorithm),  one  can continue the process 
until a substantial fraction of the  states have negative phase. This 
situation  can  be easily detected. Unfortunately, each iteration takes 
twice as long as the previous one, so the algorithm described in  this 
footnote requires  exponential  time. 
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. quantum computer in a state which as before is a super- 
position of all possible inputs. After the algorithm has 
finished, the result will be  a  quantum computer that ex- 
ists  in a superposition of all the various local minima that 
are found  by searching from  every  possible initial  state. A 
measurement would then reveal any one of these local min- 
ima,  but most likely not the shortest  path.  Thus,  what one 
would  like to do before the measurement is to compare the 
various states with each other  and shift the amplitude  into 
the  states representing shorter  paths. Put differently, we 
would  like an algorithm which acts in a space that is  re- 
stricted to only those quantum states which already have 
non-zero amplitude. Unfortunately, the linear transforma- 
tions allowed  by ordinary  quantum mechanics have no way 
for a given state (or more precisely,  component of a super- 
position) to “sense” the amplitude of other states.  This is 
the aspect of nonlinear quantum mechanics  which  allows 
for the solution of NP-complete problems. 

Returning to  the algorithm described above, it is clear 
that if one could obtain the necessary nonlinear transfor- 
mation, one could find the answer to an NP-complete prob- 
lem in polynomial (in fact, linear) time, and using only a 
single evaluation of the oracle. It may  be objected that 
the nonlinear operator described above appears  arbitrary 
and unnatural: indeed, it was selected exactly so as to be 
able to solve the  stated problem.  However, the apparently 
arbitrary  operation  can  be built using ordinary  unitary op- 
erations  and much simpler and more ‘natural’ single qubit 
nonlinear operators (that is, to  the extent that any non- 
linear operation  in  quantum mechanics can be considered 
‘natural’). One possible technique for generating the trans- 
formation would be to use the following steps: first, act on 
the two qubits with the  unitary operator 

1 0 0  1 q :  J z  0 1 - 1  : : !,I (75) 

This transforms the  states above as follows: 

Next,  operate on the second qubit with a simple one qubit 
nonlinear gate 2- that maps both I0)and 1l)to the  state 
IO). Thus 

(77) 

The  third final state is unknown because we have not 
bothered to specify how the non-linear gate  acts on the 
state loo>+ 101>- [lo>+ Ill>. This omission thereby al- 
lows  for flexibility in choosing the  gate ii-. Whatever the 
state IA>may be, we can perform a  unitary operation that 
will transform the first qubit  into the pure state 1O)while 
leaving the  state 100>in place. The computer is then in 
one of the following states 

( a )  l0)lO) 
(b)  l0)lO) (78) 
( 4  10)(40) + Yll)) 

A second  non-linear gate E+ is now required that will 
map  the  state z 10) + y 11) to  the  state 11) (for the partic- 
ular values of x and  y which result from the above steps 
but  not necessarily for arbitrary x and  y), while  leaving the 
state 1O)unchanged. After this  gate is applied, the trans- 
formation resulting from the steps described so far is then: 

The desired two qubit  transformation is then easily ob- 
tained with a NOT gate on the second qubit  and  a 7r/2 
rotation on the first qubit. 

Having thus shown how to generate the needed  two qubit 
gate, the question is  now reduced to  that of generating the 
simpler single qubit gates ii- and ii+. If one considers the 
state of a qubit as a point on the unit sphere, then all 
unitary  operations correspond to rotations of the sphere; 
and while such rotations can place two state vectors in any 
particular position on the sphere, they can never  change 
the angle between  two state vectors. A nonlinear trans- 
formation corresponds to a stretching of the sphere, which 
will  in general modify this angle. The desired gates E-  
and ii+ are two particular examples of such operations. 
Excepting perhaps  certain pathological cases (e.g., discon- 
tinuous transformations), it is evident that virtually any 
nonlinear operator, when  used repeatedly in combination 
with  ordinary  unitary  transformations (which can be  used 
to place the two state vectors in an  arbitrary position on 
the sphere), can be  used to arbitrarily increase or decrease 
the angle between two states, as needed to generate the 
gates ii- and si+. An explicit method for generating these 
gates using the Weinberg  model  will now be provided. 

C. An explicit  construction using the Weinberg  model 
In  this section, an explicit construction of the necessary 

nonlinear gates is provided using the Weinberg  model of 
nonlinear quantum mechanics. Although the Weinberg 
model is probably not the most plausible nonlinear the- 
ory proposed to date,  it serves as a good example because 
of its simplicity and generality, and because it is the most 
well-known nonlinear theory- 
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In Weinberg’s model, the “Hamiltonian” is a real homo- 
geneous non-bilinear function h(+, $*) of degree one, that 
is[98] 

and  state vectors time-evolve according to  the equation 

Following  Weinberg [98] , one can  always perform a canoni- 
cal homogeneous transformation such that a two-state sys- 
tem (i.e., a qubit) can be described by a Hamiltonian func- 
tion 

where 

a = -  l+2I2 
n 

It is easy to verify his solution to  the time dependent 
nonlinear Schrodinger equation  (81), which is 

+ k ( t )  = cke -iwk(a)t (85) 

where 

q ( a )  = X(a) - aE’(a) (86) 

w,(a) =X(,) + (1 - a)X’(a) (87) 

For nonlinear X(a), one sees that  the frequencies depend 
on the magnitude of the initial  amplitude in each basis 
state. Intuitively, one can imagine a transformation on 
the unit  sphere which, instead of rotating the sphere at a 
particular  rate, twists the sphere in such a way so that each 
point rotates at a rate which depends  upon  its angle 0 from 
the axis (clearly, this  transformation involves stretching of 
the surface). One can exploit this stretching of the sphere 
to build the gate 6- as follows: 

Step 1. Perform a rotation on the first qubit by an angle 
45 < 45O: 

10) - COS(4)lO> - sin(4)ll) (88) 
11) - sin(4)lO) + cos(4)ll) (89) 

Step 2. Time-evolve the system according to  the nonlin- 
ear Hamiltonian h = &(a). Thus 

the nonlinear Hamiltonian will cause the components to v 
evolve at different frequencies. As long as these frequencies 
are incommensurate, there is a time t at which a=y=6=1 
and P=-1 (to within an accuracy E ) .  (Further,  this  time t 
is a polynomial function of the desired accuracy E . )  The 
net result of these two steps is then 

10) - COS(4)lO) + sin(4)ll) (92) 
11) - sin(4)lO) + cos(4)ll) (93) 

Step 3. Reverse the first step.  Thus 

10) - cos(24) 10) + sin(24) 11) (94) 

11) - 11) (95) 

Essentially, we have reduced the angle between the two 
states by an amount 24. By  suitable repetition of this pro- 
cedure (that is,  by  choosing 4 appropriately for each itera- 
tion), or simply by  choosing 4 precisely in the first step,  the 
states IO>and Il>can  be mapped to within E of the  state 
IO>, in an amount of time which is a polynomial function 
of the desired accuracy. This is the desired behavior for the 
nonlinear gate E - .  The procedure can be modified slightly 
to increase the angle between state vectors and produce the 
desired behavior for the  gate E+. With these two gates, 
one can solve NP-complete problems using the Weinberg 
model. 

Note that this method is robust against small errors: the 
algorithm does not require exponentially precise operations 
at any stage. 

Finally, the class #P contains problems in which  you 
must determine not only if there exists a solution, but the 
exact  number of solutions. It is easy to see that  the #P 
problems are much harder to solve than NP-complete prob- 
lems. To solve the problems in the class #P, one replaces 
the flag qubit  with a string of log, n qubits  and modifies the 
algorithm slightly - so that  it adds the number of solutions 
in each iteration  rather than performing what is  effectively 
a one bit AND.  In  this case, a measurement of the final 
result reveals the exact number of solutions. 

D. Second method 
A different algorithm that solves the NP oracle problem 

can be thought of as an extension of Grover’s data-base 
search algorithm[55] to a nonlinear regime. Suppose that 
it is  possible to perform a nonlinear operation on a single 
qubit that has the following property: somewhere on the 
unit  sphere  there exists a line (of not exponentially small 
extent) along which application of the operation causes 
nearby points to move apart exponentially rapidly. One 
can exploit this behavior to solve NP problems in the fol- 
lowing manner. Begin with an ordinary  quantum computer 
(Le., one that can perform the usual quantum logic opera- 
tions)  and place it in an equal superposition of all  possible 
inputs.  Then use the oracle (only  once) to calculate f ( i )  
and  obtain  the  state: 



.I Now perform a 1r/2 rotation on each of the first n qubits. 
Each state li > then maps  into a superposition over  all  pos- 
sible li >, with amplitude St&. In  particular, each state 
li>contributes +-&of its amplitude to  the  state 100 ... 0 >, 
for a total contribution of amplitude & from  each li >. At 
least Q2" of these states correspond to a particular value of 
f ( i )  = a,  and thus the  state 100 .... 0,a > has amplitude at 
least 112. A measurement on the first n qubits will there- 
fore  yield the  state 100 ... 0 > with probability at least 1/4. 
The system will then  be in the  state 

(97) 

where s is the number of solutions i for  which f ( i )  = 1. 
The  last qubit now contains the necessary information; for 
small s, however, a measurement of the last  qubit will  al- 
most  always return IO), yielding no information. We wish to  
distinguish between the cases s=O and s>O. This is  accom- 
plished by repeatedly applying the nonlinear operation to 
drive the  states representing these two cases apart  at  an ex- 
ponential rate: eventually, at a time determined by a poly- 
nomial function of the number of qubits n, the number of 
solutions s, and the  rate of spreading, the two cases  will  be- 
come  macroscopically distinguishable. A measurement on 
the last qubit will  now reveal the solution. Of course, if 
the angular extent of the nonlinear region is small, it may 
be necessary to repeat the algorithm several times in order 
to determine the  solution with high probability. In gen- 
eral, the algorithm will require O ( ( T / ~ ) ~ )  trials, where Q is 
the angular extent of the nonlinear region. The oracle may 
need to be called only once  for q sufficiently  large. 

Problems in the class #P ask  us to determine the ex- 
act number of solutions s. This is approximately found 
by counting the number of times that  the nonlinear op- 
erator was applied. To determine s exactly, one proceeds 
with finer and finer estimates by rotating the final qubit 
such that  the current  best  estimate is centered in the non- 
linear region;  in this way, applying the nonlinear operator 
separates states  with s near this value so that they  are dis- 
tinguishable. With only a polynomial number of iterations, 
one determines the value s exactly. 

Unlike the first method described previously, the above 
algorithm has one disadvantage in that it requires expo- 
nential precision.  However, it can be made robust against 
noise  by introducing a multiple qubit nonlinearity, as fol- 
lows.  Use the previous algorithm but calculate the value 
f ( i )  a total of M times to obtain  the  state 

2n - s S 

2n 2n 
1000 ...... 0) + - 1111 .... 1) 

By making M sufficiently large - a constant multiple of n 
will  suffice - the amplitude of the  states with more  ones 
than zeros (such as 11101 ... 1)) caused by random noise  will 
be exponentially smaller then the amplitude caused by the 
existence of a single solution for  which f ( i )  = 1. Hence, 
any nonlinear operator that rapidly increases the ampli- 
tude of states with more ones than zeroes with respect to 
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the amplitude of states with more  zeroes than ones will 
suffice to distinguish reliably the cases s=O and s=1, as re- 
quired. Moreover, a nonlinearity of this  type satisfies the 
Polchinski criteria [81]  for nonlinear quantum mechanics 
without  superluminal communication. (A similar nonlin- 
ear  operator is described in more detail by Czachor in [36] 
and was the inspiration for this approach). 

E. Conclusion 

In conclusion: it has been demonstrated that nonlinear 
time evolution can in fact be exploited to allow a quantum 
computer to solve NP-complete and #P problems in poly- 
nomial time. It has been shown explicitly how to  accom- 
plish this exponential speed-up using the Weinberg model 
of nonlinear quantum mechanics. A nonlinear quantum 
algorithm has also been presented using Polchinski type 
nonlinearities which are known not to support superlumi- 
nal communication. 

The  author would  like to emphasize that these results 
are probably best viewed as new and  further evidence that 
the universe is exactly linear, rather  than as blueprints for 
the design of a machine if it were not. (Though it is cer- 
tainly  not obvious, a priori, that quantum mechanics  need 
be  strictly  linear - and the question can be fairly viewed 
as an experimental one.  Moreover, it is the mere existence 
of a nonlinearity, no matter how small, which changes the 
structure of the complexity classes.) Thus, the connection 
between physics and  computation is now made unavoid- 
able: the underlying laws of physics strongly impact the 
theoretical complexity of computational problems. And 
while it does not seem  likely that nonlinear time evolution 
does exist  in reality, the theoretical implications and prac- 
tical  applications that would result from a discovery to  the 
contrary may warrant  further investigation into the  matter. 
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